Влияние структурной изомерии пиридинмонокарбоновых кислот на объемные свойства их буферных растворов

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Методом денсиметрии исследованы особенности межмолекулярных взаимодействий структурных изомеров пиридинмонокарбоновой кислоты (PA, NA, INA) в водных буферных растворах при изменении температуры от 288.15 К до 313.15 К. На основе экспериментальных значений плотности растворов определены кажущиеся молярные объемы пиколиновой (PA), никотиновой (NA) и изоникотиновой (INA) кислот в буферном растворе (рН 7.4), концентрационные зависимости которых носят линейный характер. Определены парциальные молярные объемы и расширяемости при бесконечном разбавлении, а также их производные по температуре, значения которых свидетельствуют о структурно-разрушающем поведении изомеров PyCOOH в буферных растворах. Выявлено, что подобное воздействие на структуру буферного раствора уменьшается в ряду PA→ NA→ INA, а буферный раствор INA относится к более структурированным системам среди исследуемых растворов.

Полный текст

Доступ закрыт

Об авторах

Е. Ю. Тюнина

Институт химии растворов им. Г.А. Крестова, Российская академия наук

Автор, ответственный за переписку.
Email: tey@isc-ras.ru
Россия, 153045, Иваново

Г. Н. Тарасова

Институт химии растворов им. Г.А. Крестова, Российская академия наук

Email: tey@isc-ras.ru
Россия, 153045, Иваново

Список литературы

  1. Кузьменок Н.М., Михаленок С.Г. Органическая химия. Гетероциклические соединения. Минск: изд-во БГТУ, 2015. 146 с.
  2. Тюкавкина Н.А., Бауков Ю.И., Зурабян С.Э. Биоорганическая химия. М.: «Гэотар-Медиа», 2011. 416 с.
  3. Органическая химия: Учебник для вузов / Под ред. В.П. Черных. Харьков: Изд-во НФаУ, 2007. 776 с.
  4. Lubicova L., Waisser K. // Ces. Slov Farm. 1997. V. 46. P. 99.
  5. Westermark K., Rensmo H., Lees A.C., Vos J.G., Siegbahn H. // J. Phys. Chem. 2002. V. 106B. P. 10108.
  6. Rao D.R.M., Rawat N., Manna D. et al. // J. Chem. Thermodynamics 2013. V. 58. P. 432.
  7. Abraham M.H., Acree Jr.W.E. // J. Chem. Thermodynamics. 2013. V. 61. P. 74.
  8. Seifriz I., Konzen M., Paula M.M.S. et al. // J. Inorg. Biochem. 1999. V. 76. P. 153.
  9. Ramesh G., Reddy B.V. // J. Mol. Struct. 2018. V. 1160. P. 271.
  10. Al-Saif F.A., Al-Humaidi J.Y., Binjawhar D.N. et al. // J. Mol. Struct. 2020. V. 1218. P. 128547.
  11. Swiderski G., Kalinowska M., Wilczewska A.Z. et al. // Polyhedron. 2018. V. 150. P. 97.
  12. Marinkoviсć A.D., Drmanić S.Ž., Jovanović B.Ž. et al. // J. Serb. Chem. Soc. 2005. V. 70. P. 557.
  13. Rao D.R.M., Rawat N., Sawant R.M. et al. // J. Chem. Thermodynamics. 2012. V. 55. P. 67.
  14. Gamov G.A., Kiselev A.N., Alexsandriiskii V.V. et al. // J. Mol. Liq. 2017. V. 242. P. 1148.
  15. Ashton L.A., Bullock J. // J. Chem. Soc., Faraday Trans. 1982. V. 1. P. 1177.
  16. Koczon P., Dobrowolski J.Cz., Lewandowski W., Mazurek A.P. // J. Mol. Struct. 2003. V. 655. P. 89.
  17. Han F., Chalikian T.V. // J. Am. Chem. Soc. 2003. V. 125. P. 7219.
  18. Kumar H., Singla M., Jindal R. // J. Chem. Thermodynamic. 2014. V. 70. P. 190.
  19. Taha M., Lee M.-J. // J. Chem. Thermodynamic. 2009. V. 41. P. 705.
  20. Franks F. Water: A comprehensive treatise. V. 3. New York: Plenum Press, 1973.
  21. Gurney R.W. Ionic processes in solution. New York: McGraw Hill, 1953.
  22. Hepler L.G. // Can. J. Chem. 1969. V. 47. P. 4613.
  23. Lytkin A.I., Badelin V.G., Krutova O.N. et al. // Russ. J. Gen. Chem. 2019. V. 89. P. 2235.
  24. Tyunina E.Yu., Badelin V.G., Mezhevoi I.N. // J. Chem. Thermodynamics. 2019. V. 131. P. 40.
  25. Васильев В.П., Бородин В.А., Козловский Е.В. Применение ЭВМ в химико-аналитических расчетах. М.: Высшая школа, 1993. 112 с. [V.P. Vasiliev, V.A. Borodin, E.V. Kozlovsky. Application of PC in chemical analytical calculations. Moscow: Vysshaya Shkola, 1993.]
  26. Meshkov A.N., Gamov G.A. // Talanta. 2019. V. 198. P. 200.
  27. Tyunina E.Yu., Krutova O.N., Lytkin A.I. et al. // J. Chem. Thermodynamics. 2022. V. 171. P. 106809.
  28. Millero F.J., Knox J.H. // J. Chem. Eng. Data 1973. V. 18. P. 407.
  29. Banipal T.S., Singh H., Banipal P.K. et al. // Thermochim. Acta 2013. V. 553. P. 31.
  30. Liu J.L., Hakin A.W., Hedwig G.R. // J. Chem. Thermodynamics 2006. V. 38. P. 1640.
  31. Banik I., Roy M.N. // J. Mol. Liq. 2012. V. 169. P. 8.
  32. Kumar H., Sheetal, Sharma S.K. // J. Solution Chem. 2016. V. 45. P. 1.
  33. Dhal K., Singh S., Talukdar M. // J. Mol. Liq. 2022. V. 361. P. 119578.
  34. Chakraborty N., Juglan K.C., Kumar H. // J. Mol. Liq. 2021. V. 332. P. 115869.
  35. Gupta J., Nain A.K. // J. Chem. Thermodynamics. 2020. V. 144. P. 106067.
  36. Ivanov E.V., Lebedeva E.Yu. // J. Mol. Liq. 2020. V. 310. P. 113134.
  37. Redlich O., Meyer D.M. // Chem. Rev. 1964. V. 64. P. 221.
  38. Masson D.O. // Philosoph. Magazine 1929. V. 8. P. 218.
  39. Robinson R.A., Green R.W. // J. Phys. Chem. 1961. V. 65. P. 1084.
  40. Dash J.K., Sahu M., Chakraborty M. et al. // J. Mol. Liq. 2000. V. 84. P. 215.
  41. Patyar P., Kaur G. // J. Solution Chem. 2022. V. 51. P. 58.
  42. Крумгальц Б.С., Гержберг Ю.И. и др. // Журн. физ. химии. 1971. Т. 45. С. 2352.
  43. Nain A.K., Neetu P.R. // J. Chem. Thermodynamics. 2013. V. 64. P. 172.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис. 1. Диаграммы мольно-долевого распределения ионных форм изомеров пиридинкарбоновой кислоты в зависимости от рН водного раствора: INA (а), NA (б), PA (в) (при Т = 298.15 К, I = 0).

Скачать (188KB)
3. Рис. 2. Концентрационные зависимости кажущихся молярных объемов (Vj) пиколиновой (а), изоникотиновой (б) и никотиновой (с) кислот в водном буферном растворе при температурах: 288.15 (1), 293.15 (2), 298.15 (3), 303.15 (4), 308.15 (5), 313.15 K (6).

Скачать (272KB)
4. Рис. 3. Температурные зависимости парциальных молярных объемов Voφ при бесконечном разбавлении для никотиновой (1), пиколиновой (2) и изоникотиновой (3) кислот в водном буферном растворе (рН 7.4).

Скачать (64KB)

© Российская академия наук, 2024