Two-Dimensional Magneto-optical Trap for Producing a Flux of Cold Thulium Atoms
- 作者: Yaushev M.O.1,2, Mishin D.A.1, Tregubov D.O.1, Provorchenko D.I.1, Kolachevskiy N.N.1,3, Golovizin A.A.1
 - 
							隶属关系: 
							
- Lebedev Physical Institute, Russian Academy of Sciences
 - Moscow Institute of Physics and Technology (State University),
 - International Center of Quantum Technologies
 
 - 期: 卷 164, 编号 2 (2023)
 - 页面: 204-213
 - 栏目: Articles
 - URL: https://kazanmedjournal.ru/0044-4510/article/view/653668
 - DOI: https://doi.org/10.31857/S0044451023080060
 - EDN: https://elibrary.ru/HZODYX
 - ID: 653668
 
如何引用文章
详细
We propose a design of a source of cold thulium atoms based on a 2D magneto-optical trap and perform numerical simulation of its operation. Optimal parameters of cooling radiation and the magnetic field are determined; it is shown that for a total radiation power of 50 mW and an atomic oven temperature of 800 K, the proposed configuration can provide a flux of 4 × 108 cold atoms per second, and with an increase of the oven temperature, the flux can reach ~ 1011 atom/s. Such a source can be used for building frequency standards as well as in experiments with quantum simulators and the Bose–Einstein condensate.
作者简介
M. Yaushev
Lebedev Physical Institute, Russian Academy of Sciences;Moscow Institute of Physics and Technology (State University),
														Email: iaushev.mo@phystech.edu
				                					                																			                												                								Moscow, 119991 Russia;Dolgoprudny, Moscow oblast, 141701 Russia						
D. Mishin
Lebedev Physical Institute, Russian Academy of Sciences
														Email: iaushev.mo@phystech.edu
				                					                																			                												                								Moscow, 119991 Russia						
D. Tregubov
Lebedev Physical Institute, Russian Academy of Sciences
														Email: iaushev.mo@phystech.edu
				                					                																			                												                								Moscow, 119991 Russia						
D. Provorchenko
Lebedev Physical Institute, Russian Academy of Sciences
														Email: iaushev.mo@phystech.edu
				                					                																			                												                								Moscow, 119991 Russia						
N. Kolachevskiy
Lebedev Physical Institute, Russian Academy of Sciences;International Center of Quantum Technologies
														Email: iaushev.mo@phystech.edu
				                					                																			                												                								Moscow, 119991 Russia;Moscow, 121205 Russia						
A. Golovizin
Lebedev Physical Institute, Russian Academy of Sciences
							编辑信件的主要联系方式.
							Email: artem.golovizin@gmail.com
				                					                																			                												                								Moscow, 119991 Russia						
参考
- K. Bongs et al., Nature Rev. Phys. 1, 731 (2019).
 - C. Janvier et al., Phys. Rev. A 105, 022801 (2022).
 - V. M'enoret et al., Sci. Rep. 8, 1 (2018).
 - I. Bloch, J. Dalibard, and S. Nascimbene, Nature Phys. 8, 267 (2012).
 - F. Sch¨afer, T. Fukuhara, S. Sugawa, Y. Takasu, and Y. Takahashi, Nature Rev. Phys. 2, 411 (2020).
 - X. Wu et al., Chinese Phys. B 30, 020305 (2021).
 - T. Graham et al., Nature 604, 457 (2022).
 - S. M. Brewer et al., Phys. Rev. Lett. 123, 033201 (2019).
 - S. D¨orscher et al., Metrologia 58, 015005 (2021).
 - T. Bothwell et al., Metrologia 56, 065004 (2019).
 - M. Takamoto, Y. Tanaka, and H. Katori, Appl. Phys. Lett. 120, 140502 (2022).
 - J. Grotti et al., Nature Phys. 14, 437 (2018).
 - S. Wang et al., Opt. Express 28, 11852 (2020).
 - J. Cao et al., Appl. Phys. Lett. 120, 054003 (2022).
 - A. Golovizin, D. Tregubov, D. Mishin, D. Provorchenko, and N. Kolachevsky, Opt. Express 29, 36734 (2021).
 - S. Pollock, J. Cotter, A. Laliotis, and E. Hinds, Opt. Express 17, 14109 (2009).
 - D. S. Barker et al., Phys. Rev. Appl. 11, 064023 (2019).
 - G. J. Dick, Proceedings of the 19th Annual Precise Time and Time Interval Systems and Applications Meeting, 133 (1989).
 - D. Pan, B. Arora, Y.-m. Yu, B. Sahoo, and J. Chen, Phys. Rev. A 102, 041101 (2020).
 - M. A. Norcia et al., Phys. Rev. X 8, 021036 (2018).
 - G. Biedermann et al., Phys. Rev. Lett. 111, 170802 (2013).
 - H. Katori, Appl. Phys. Express 14, 072006 (2021).
 - D. Mishin, D. Provorchenko, D. Tregubov, N. Kolachevsky, and A. Golovizin, Appl. Phys. Express 14, 112006 (2021).
 - A. Golovizin et al., Nature Commun. 10, 1724 (2019).
 - D. A. Mishin et al., Quant. Electr. 52, 505 (2022).
 - A. A. Golovizin et al., Nature Commun. 12, 5171 (2021).
 - E. Fedorova et al., Phys. Rev. A 102, 063114 (2020).
 - M. Barbiero et al., Phys. Rev. Appl. 13, 014013 (2020).
 - M. Kwon et al., Rev. Sci. Instrum. 94, 013202 (2023).
 - A. A. Golovizin et al., Instrum. Exp. Techn. 65, 896 (2022).
 - Д. Д. Сукачев, дисс канд. физ.-матем. наук, Физический институт им. П. Н. Лебедева РАН, Москва (2013).
 
补充文件
				
			
						
						
						
						
					


