Search for New Physics in Ultraperipheral Collisions at the Large Hadron Collider

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Ultraperipheral collisions belong to special type of heavy-ion collisions since strong interactions are suppressed in them because of large impact parameters of such collisions. Such conditions provide a unique possibility for studying two-photon interactions. In particular, interest in studying the production of tau-lepton pairs and Light-by-Light (LbyL) scattering has grown in recent years: a deviation of the cross sections for these processes from the predictions of the Standard model could be a manifestation of new physics. In addition, the search for the production of axion-like particles in LbyL scattering at rather low invariant masses is of interest in and of itself. The most recent results of experiments performed at the Large Hadron Collider and devoted to measurement of the tau-lepton anomalous magnetic moment and cross sections for LbyL scattering and to the search for axion-like particles are discussed in the present article, along with prospects of future measurements in the ALICE experiment.

Sobre autores

N. Burmasov

Petersburg Nuclear Physics Institute, National Research Center Kurchatov Institute; Moscow Institute of Physics and Technology

Autor responsável pela correspondência
Email: nazar.burmasov@cern.ch
Gatchina, Russia; Dolgoprudny, Russia

Bibliografia

  1. A. J. Baltz, G. Baur, D. d’Enterria, L. Frankfurt, F. Gelis, V. Guzey, K. Hencken, Yu. Kharlov, M. Klasen, S. R. Klein, V. Nikulin, J. Nystrand, I. A. Pshenichnov, S. Sadovsky, E. Scapparone, and J. Seger, Phys. Rept. 458, 1 (2008).
  2. J. G. Contreras and J. D. Tapia Takaki, Int. J. Mod. Phys. A 30, 1542012 (2015).
  3. J. Ellis, N. E. Mavromatos, and T. You, Phys. Rev. Lett. 118, 261802 (2017).
  4. J. Ohnemus, T. F. Walsh, and P. M. Zerwas, Phys. Lett. B 328, 369 (1994).
  5. I. F. Ginzburg and A. Schiller, Phys. Rev. D 57, 6599 (1998).
  6. K.-M. Cheung, Phys. Rev. D 61, 015005 (2000).
  7. J. L. Hewett, F. J. Petriello, and T. G. Rizzo, Phys. Rev. D 64, 075012 (2001).
  8. M. Bauer, M. Neubert, and A. Thamm, JHEP 1712, 044 (2017).
  9. L. D. Duffy and K. van Bibber, New J. Phys. 11, 105008 (2009).
  10. D. J. E. Marsh, Phys. Rept. 643, 1 (2016).
  11. W. J. Marciano, A. Masiero, P. Paradisi, and M. Passera, Phys. Rev. D 94, 115033 (2016).
  12. S. P. Martin and J. D. Wells, Phys. Rev. D 64, 035003 (2001).
  13. D. J. Silverman and G. L. Shaw, Phys. Rev. D 27, 1196 (1983).
  14. L. Beresford and J. Liu, Phys. Rev. D 102, 113008 (2020).
  15. M. Dyndal, M. Kłusek-Gawenda, A. Szczurek, and M. Schott, Phys. Lett. B 809, 135682 (2020).
  16. G. Aad et al. (ATLAS Collab.), JHEP 2111, 050 (2021).
  17. A. M. Sirunyan et al. (CMS Collab.), Phys. Lett. B 797, 134826 (2019).
  18. M. Kłusek-Gawenda, P. Lebiedowicz, and A. Szczurek, Phys. Rev. C 93, 044907 (2016).
  19. ALICE Collab., Letter of intent for ALICE 3: A next generation heavy-ion experiment at the LHC (2022), https://cds.cern.ch/record/2803563
  20. M. Kłusek-Gawenda, R. McNulty, R. Schicker, and A. Szczurek, Phys. Rev. D 99, 093013 (2019).
  21. N. Burmasov, E. Kryshen, P. Bühler, and R. Lavicka, Comput. Phys. Commun. 277, 108388 (2022).
  22. T. Hahn and M. Pérez-Victoria, Comput. Phys. Commun. 118, 153 (1999).
  23. M. Kłusek-Gawenda and A. Szczurek, Phys. Rev. C 87, 054908 (2013).
  24. A. V. Dorogush, V. Ershov, and A. Gulin, arXiv: 1810.11363.
  25. L. Anderlini et al., JINST 15, T12005 (2020).
  26. E. Khairullin and A. Ustyuzhanin, J. Phys.: Conf. Ser. 1085, 042009 (2018).
  27. V. P. Goncalves, D. E. Martins, and M. S. Rangel, Eur. Phys. J. C 81, 522 (2021).
  28. S. Knapen, T. Lin, H. K. Lou, and T. Melia, Phys. Rev. Lett. 118, 171801 (2017).
  29. S. J. Brodsky, T. Kinoshita, and H. Terazawa, Phys. Rev. D 4, 1532 (1971).
  30. K. A. Olive et al. (Particle Data Group), Chin. Phys. C 38, 090001 (2014).
  31. B. Abi et al. (Muon g-2 Collab.), Phys. Rev. Lett. 126, 141801 (2021).
  32. G. W. Bennett et al. (Muon g-2 Collab.), Phys. Rev. D 73, 072003 (2006).
  33. F. del Aguila, F. Cornet, and J. Illana, Phys. Lett. B 271, 256 (1991).
  34. J. Abdallah et al. (DELPHI Collab.), Eur. Phys. J. C 35, 159 (2004).
  35. G. Aad et al. (ATLAS Collab.), JINST 3, S08003 (2008).
  36. S. Chatrchyan et al. (CMS Collab.), JINST 3, S08004 (2008).
  37. K. Aamodt et al. (ALICE Collab.), JINST 3, S08002 (2008).
  38. ATLAS Collab., arXiv: 2204.13478.
  39. CMS Collab., arXiv: 2206.05192.
  40. N. Burmasov, E. Kryshen, P. Buehler, and R. Lavicka, arXiv: 2203.00990.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Ltd., 2023