Origin of the signals registered on february 23, 1987 in gravity antennas

Abstract

During the SN1987A outburst on February 23, 1987, four underground neutrino detectors and two gravitational antennas in Rome and Maryland detected signals associated with the gravitational collapse of the star’s core. Since it is impossible to detect direct gravitational radiation from the collapse of SN1987A with antennas, it is still not clear what events were recorded by gravitational antennas. In this work, an amplitude analysis of the signals from gravitational antennas in Rome and Maryland in the vicinity of the signals from neutrino detectors during Supernova SN1987A was carried out. It is shown that the amplitude distributions in all antenna signals are consistent with the distribution of fluctuating energy losses of atmospheric muons crossing the antennas. A conclusion has been made about the muon origin of signals detected by “Weber” type antennas — aluminized cylinders with a mass of 2–3 tons.

Full Text

Restricted Access

About the authors

N. Yu. Agafonova

Institute for Nuclear Research of the Russian Academy of Sciences

Author for correspondence.
Email: Agafonova@inr.ru
Russian Federation, Moscow

A. S. Malgin

Institute for Nuclear Research of the Russian Academy of Sciences

Email: Agafonova@inr.ru
Russian Federation, Moscow

References

  1. В. Л. Дадыкин, Г. Т. Зацепин, В. Б. Корчагин, П. В. Корчагин, А. С. Мальгин, О. Г. Ряжская, В. Г. Рясный, В. П. Талочкин, Ф. Ф. Хальчуков, В. Ф. Якушев, М. Альетта, Дж. Бадино, Дж. Болонья, К. Кастаньоли, Ф. Кастеллина, В. Фульджионе и др., Письма в ЖЭТФ 45, 464 (1987) [V. L. Dadykin, G. T. Zatzepin, V. B. Korchagin, P. V. Korchagin, A. S. Mal’gin, O. G. Ryazhskaya, V. G. Ryasnyi, V. P. Talochkin, F. F. Khal’chukov, V. F. Yakushev, M. Aglietta, G. Badino, G. Bologna, C. Castagnoli, A. Castellina, W. Fulgione, et al., JETP Lett. 45, 593 (1987)].
  2. M. Aglietta, G. Badino, G. Bologna, C. Castagnoli, A. Castellina, V. L. Dadykin, W. Fulgione, P. Galeotti, F. F. Kalchukov, B. Kortchaguin, P. V. Kortchaguin, A. S. Malguin, V. G. Ryassny, O. G. Ryazhskaya, O. Saavedra, V. P. Talochkin, et al., Europhys. Lett. 3, 1315 (1987).
  3. Е. Н. Алексеев, Л. Н. Алексеева, В. И. Волченко, И. В. Кривошейна, Письма в ЖЭТФ 45, 461 (1987) [E. N. Alekseev, L. N. Alekseeva, V. I. Volchenko, and I. V. Krivosheina, JETP Lett. 45, 589 (1987)].
  4. K. Hirata, T. Kajita, M. Koshiba, M. Nakahata, Y. Oyama, N. Sato, A. Suzuki, M. Takita, Y. Totsuka, T. Kifune, T. Suda, K. Takahashi, T. Tanimori, K. Miyano, M. Yamada, E. W. Beier, et al., Phys. Rev. Lett. 58, 1490 (1987).
  5. R. M. Bionta, G. Blewitt, C. B. Bratton, D. Casper, A. Ciocio, R. Claus, B. Cortez, M. Crouch, S. T. Dye, S. Errede, G. W. Foster, W. Gajewski, K. S. Ganezer, M. Goldhaber, T. J. Haines, T. W. Jones, et al., Phys. Rev. Lett. 58, 1494 (1987).
  6. T. Bronzini, S. Frasca, G. Pizzella, G. V. Pallottino, and G. Vannaroni, Nuovo Cimento C 8, 300 (1985).
  7. J. Weber, Phys. Rev. Lett. 22, 1320 (1969).
  8. E. Amaldi, P. Bonifazi, M. G. Castellano, E. Coccia, C. Cosmelli, S. Frasca, M. Gabellieri, I. Modena, G. V. Pallottino, G. Pizzella, P. Rapagnani, F. Ricci, and G. Vannaroni, Europhys. Lett. 3, 1325 (1987).
  9. M. Aglietta, A. Castellina, W. Fulgione, G. Trinchero, S. Vernetto, C. Castagnoli, P. Galeotti, O. Saavedra, E. Amaldi, S. Frasca, G. V. Pallottino, G. Pizzella, P. Rapagnani, F. Ricci, P. Astone, C. Cosmelli, et al., Nuovo Cimento C 14, 171 (1991).
  10. P. Galeotti and G. Pizzella, Eur. Phys. J. C 76, 426 (2016); arXiv: 1603.05076 [physics.gen-ph].
  11. P. Bonifazi, V. Ferrari, S. Frasca, G. V. Pallottino, and G. Pizzella, Nuovo Cimento C 1, 465 (1978).
  12. M. Aglietta, G. Badino, G. Bologna, C. Castagnoli, A. Castellina, W. Fulgione, P. Galeotti, O. Saavedra, G. Trinchero, S. Vernetto, E. Amaldi, C. Cosmelli, S. Frasca, G. V. Pallottino, G. Pizzella, P. Rapagnani, et al., Nuovo Cimento C 12, 75 (1989).
  13. D. H. Ezrow, N. S. Wall, J. Weber, and G. B. Yodh, Phys. Rev. Lett. 24, 945 (1970).
  14. В. С. Мурзин, Введение в физику космических лучей (Москва, Атомиздат, 1979).
  15. E. Amaldi and G. Pizzella, Nuovo Cimento C 9, 612 (1986).
  16. D. Javorsek II, P. A. Sturrock, R. N. Lasenby, A. N. Lasenby, J. B. Buncher, E. Fischbach, J. T. Gruenwald, A. W. Hoft, T. J. Horan, J. H. Jenkins, J. L. Kerford, R. H. Lee, A. Longman, J. J. Mattes, B. L. Morreale, D. B. Morris, et al., Astropart. Phys. 34, 173 (2010); arXiv: 1007.0924 [nucl-ex].
  17. J. H. Jenkins and E. Fischbach, Astropart. Phys. 31, 407 (2009).
  18. J. H. Jenkins, D. W. Mundy, and E. Fischbach, Nucl. Instrum. Methods A 620, 332 (2010).
  19. A. Parkhomov, J. Mod. Phys. 2, 1310 (2011).
  20. T. Mohsinally, S. Fancher, M. Czerny, E. Fischbach, J. T. Gruenwald, J. Heim, J. H. Jenkins, J. Nistor, and D. O’Keefe, Astropart. Phys. 75, 29 (2016).
  21. D. E. Alburger, G. Harbottle, and E. F. Norton, Earth Planet. Sci. Lett. 78, 168 (1986).
  22. E. D. Falkenberg, Apeiron 8, 32 (2001).
  23. E. Fischbach, V. E. Barnes, N. Cinko, J. Heim, H. B. Kaplan, D. E. Krause, J. R. Leeman, S. A. Mathews, M. J. Mueterthies, D. Neff, and M. Pattermann, Astropart. Phys. 103, 1 (2018); arXiv: 1801.03585.
  24. B. P. Abbott et al. (LIGO Scientific Collab. and Virgo Collab.), Phys. Rev. Lett. 119, 161101 (2017).
  25. B. P. Abbott, R. Abbott, T. D. Abbott, F. Acernese, K. Ackley, C. Adams, T. Adams, P. Addesso, R. X. Adhikari, V. B. Adya, C. Affeldt, M. Afrough, B. Agarwal, M. Agathos, K. Agatsuma, N. Aggarwal, et al., Astrophys. J. Lett. 848, L12 (2017).
  26. N. Agafonova, A. Malgin, and E. Fischbach; arXiv: 2107.00265 [nucl-ex].

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Events in the Rome (RGA) (a) and Maryland (MGA) (b) gravity detectors in the time vicinity τ of the LSD signal at 2 h 52 min UT on 23.02.1987. The vertical lines in Fig. a highlight the region of the LSD signal. The dotted curves correspond to the average temperature of the events: a — T = 29 K; b — T = 31 K.

Download (104KB)
3. Fig. 2. Differential energy distributions of 55 RGA events in the vicinity of the LSD signal at 2:52 UT on 23.02.1987 (histogram in Fig. a) and its integral form (b). The straight line in Fig. b — exp(–T/) — corresponds to = 29 K.

Download (92KB)
4. Fig. 3. Differential spectrum of muon ionization losses Nµ(ζ), measured at sea level (histogram in Fig. a), and its integral form Nµ(≥ ζ) (b) in relative units. Parameter ζ = ε/εpr, where εpr is the probable energy loss. Straight lines in Fig. a show the half-width of the distribution ∆ζ = ∆ε = 0.52. The straight line in Fig. b corresponds to <ζ> = 0.41.

Download (96KB)

Copyright (c) 2024 Russian Academy of Sciences