Three-dimensional cell models of endometrium in development of personified methods of treatment

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The development of personalized approaches in the treatment and diagnosis of various diseases, which consider individual characteristics of the patient’s organism, is an actively developing area of modern medicine. However, the transition to personalized medicine is impossible without the generation of relevant and patient-specific disease models. One of the trends in modern cell biology is the use of three-dimensional (3D) cell cultures similar in architecture to the tissues of the human body. Models based on such cultures are the most physiologically adequate and especially valuable when it is necessary to reproduce functional features of the patient’s tissue. Models of endometrium, the inner lining of the uterus, which provides the onset and development of pregnancy, are just like that. Unfortunately, effective treatment regimens have not yet been developed for many endometrial diseases, since the pathogenesis of endometrial dysfunctions is often insufficiently studied. In addition, the correction of such diseases often requires a personalized approach. This paper reviews the existing 3D in vitro models of the human endometrium, as well as the prospects for their application for the development of personalized treatment methods in the field of gynecology and reproductology.

Толық мәтін

Рұқсат жабық

Авторлар туралы

I. Kuneev

Institute of Cytology, Russian Academy of Sciences

Хат алмасуға жауапты Автор.
Email: aldomnina@mail.ru
Ресей, 194064, Saint Petersburg

A. Sokolova

Institute of Cytology, Russian Academy of Sciences

Email: aldomnina@mail.ru
Ресей, 194064, Saint Petersburg

A. Domnina

Institute of Cytology, Russian Academy of Sciences

Email: aldomnina@mail.ru
Ресей, 194064, Saint Petersburg

Әдебиет тізімі

  1. Аганезов C. С., Аганезова Н. В., Мороцкая А. В., Пономаренко К. Ю. 2017. Рецептивность эндометрия у женщин с нарушениями репродуктивной функции. Ж. акуш. и жен. болезн. Т. 66. № 3. С. 135. (Aganezov S. S., Aganezova N. V., Morotskaya A. V., Ponomarenko K. Y. 2017. Endometrial receptivity in women with disoders in reproductive system. Journal of Obstetrics and Women’s Diseases. V. 66. No. 3. Р. 135) https://doi.org/10.17816/JOWD663135142
  2. Айламазян Э. К., Новиков Б. Н., Зайнулина М. С., Рябцева И. Т., Тарасова М. А. 2014. Акушерство: учебник для медицинских вузов. Санкт-Петербург: СпецЛит, 553 с. (Ailamazyan E. K., Novikov B. N., Zainulina M. S., Ryabtseva I. T., Tarasova M. A. 2014. Obstetrics: textbook for medical universities. St. Petersburg: SpetsLit, 553 p.)
  3. Земелько В. И., Гринчук Т. М., Домнина А. П., Арцыбашева И. В., Зенин В. В., Кирсанов А. А., Бичевая Н. К., Корсак В. С., Никольский Н. Н. 2011. Мультипотентные мезенхимные стволовые клетки десквамированного эндометрия. Выделение, характеристика и использование в качестве фидерного слоя для культивирования эмбриональных стволовых линий человека. Цитология. Т. 53. № 12. С. 919. (Zemelko V. I., Grinchuk T. M., Domnina A. P., Artzibasheva I. V., Zenin V. V., Kirsanov A. A., Bichevaia N. K., Korsak V. S., Nikolsky N. N. 2012. Multipotent mesenchymal stem cells of desquamated endometrium: isolation, characterization, and application as a feeder layer for maintenance of human embryonic stem cells. Cell Tiss. Biol. V. 6. P. 1.) https://doi.org/10.1134/S1990519X12010129
  4. Корсак В. С., Смирнова А. А., Шурыгина О. В. и др. 2016. Регистр центров ВРТ в России. Отчет за 2014 г. Проблемы репродукции. Т. 22. № 5. С. 10. (Korsak V. S., Smirnova A. A., Shurygina O. V. Russian ART register, 2014. 2016. Russian J. Human Reprod. V. 22. No. 5. Р. 10.) https://doi.org/10.17116/repro201622510-21
  5. Кунеев И. К., Иванова Ю. С., Нащекина Ю. А., Патронова Е. К., Соколова А. В., Домнина А. П. 2023. Разработка метода трехмерного культивирования мезенхимных стволовых (стромальных) клеток человека с использованием матрицы из целлюлозы. Цитология. T. 65. № 2. С. 170. (Kuneev I. K., Ivanova J. S., Nashchekina Y. A., Patronova E. K., Sokolova A. V., Domnina A. P. 2023. Development of method for three-dimensional cultivation of human mesenchymal stem/stromal cells using cellulose scaffolds. Tsitologiya. V. 65. No. 2. P. 170.) https://doi.org/10.31857/S0041377123020037
  6. Охрименко М. А., Хачатурян Д. А., Смольникова В. Ю., Донников А. Е. 2013. Молекулярно-генетические аспекты процесса имплантации у пациенток программы экстракорпорального оплодотворения (обзор литературы). Гинекология. Т. 15. № 5. С. 51. (Okhrimenko M. A., Khachaturyan D. A., Smol’nikova V.Y., Donnikov A. E. 2013. Molekulyarno-geneticheskie aspekty protsessa implantatsii u patsientok programmy ekstrakorporal’nogo oplodotvoreniya (obzor literatury). Gynecol. V. 15. No. 5. P. 51.)
  7. Рязанова И. А., Андреева Я. А., Лабзина М. В., Абрамова С. В. 2020. Проблемы имплантации эмбриона у женщин с патологией эндометрия (обзор литературы). Архив акушерства и гинекологии им. В. Ф. Снегирёва. Т. 7. № 2. С. 74. (Ryazanova I. A., Andreyeva Ya.A., Labzina M.V., Abramova S.V., 2020. Problems of embryo implantation in women with endometrial pathology (literature review). Snegirev Arch. Obstetrics Gynecol. (Russ.) V. 7. No. 2. P. 74.) http://doi.org/10.17816/2313-8726-2020-7-2-74-79
  8. Трубникова Л. И., Вознесенская Н. В., Таджиева В. Д., Корнилова Т. Ю., Албутова М. Л., Тихонова Н. Ю. 2019. Учебно-методическое пособие. Актуальные вопросы гинекологии. Ульяновск: УлГУ. (Trubnikova L. I., Voznesenskaya N. V., Tadzhieva V. D., Kornilova T. Yu., Albutova M. L., Tikhonova N. Yu. 2019. Educational and methodological manual. Top. Issues Gynecol. Ulyanovsk: UlSU (Russ.).)
  9. Abbas Y., Brunel L. G., Hollinshead M. S., Fernando R. C., Gardner L., Duncan I., Moffett A., Best S., Turco M. Y., Burton G. J., Cameron R. E. 2020. Generation of a three-dimensional collagen scaffold-based model of the human endometrium. Interface Focus. V. 2: e:20190079. https://doi.org/10.1098/rsfs.2019.0079
  10. Ahn J., Yoon M. J., Hong S. H., Cha H., Lee D., Koo H. S., Ko J. E., Lee J., Oh S., Jeon N. L., Kang Y. J. 2021. Three-dimensional microengineered vascularised endometrium-on-a-chip. Hum Reprod. V. 3. P. 2720. https://doi.org/10.1093/humrep/deab186
  11. Albertini D. F. 2020. Pregnancy loss: more a matter of chromosomes or maternal discretion? J. Assist. Reprod. Genet. V. 37. P. 1. https://doi.org/10.1007/s10815-020-01696-8
  12. Arnold J. T., Kaufman D. G., Seppälä M., Lessey B. A. 2001. Endometrial stromal cells regulate epithelial cell growth in vitro: a new co-culture model. Human Reprod. V. 16. P. 836. https://doi.org/10.1093/humrep/16.5.836
  13. Barker N., Huch M., Kujala P., van de Wetering M., Snippert H. J., van Es J. H., Sato T., Stange D. E., Begthel H., van den Born M., Danenberg E., van den Brink S., Korving J., Abo A., Peters P. J., Wright N., Poulsom R., Clevers H. 2010. Lgr5(+ve) stem cells drive self-renewal in the stomach and build long-lived gastric units in vitro. Cell Stem Cell. V. 6. P. 25. https://doi.org/10.1016/j.stem.2009.11.013
  14. Bellofiore N., Cousins F., Temple-Smith P., Evans J. 2019. Altered exploratory behaviour and increased food intake in the spiny mouse before menstruation: a unique pre-clinical model for examining premenstrual syndrome. Human Reprod. V. 34. P. 308. https://doi.org/10.1093/humrep/dey360
  15. Bilirgen A. C., Toker M., Odabas S., Yetisen A. K., Garipcan B., Tasoglu S. 2021. Plant-based scaffolds in tissue engineering. ACS Biomat. Sci. Eng. V. 7. P. 926. https://doi.org/10.1021/acsbiomaterials.0c01527
  16. Boretto M., Cox B., Noben M., Hendriks N., Fassbender A., Roose H., Amant F., Timmerman D., Tomassetti C., Vanhie A., Meuleman C., Ferrante M., Vankelecom H. 2017. Development of organoids from mouse and human endometrium showing endometrial epithelium physiology and long-term expandability. Development. V. 144. P. 1775. https://doi.org/10.1242/dev.148478
  17. Borschel G. H., Huang Y. C., Calve S., Arruda E. M., Lynch J. B., Dow D. E., Kuzon W. M., Dennis R. G., Brown D. L. 2005. Tissue engineering of recellularized small-diameter vascular grafts. Tissue Eng. V. 11. P. 778. https://doi.org/10.1089/ten.2005.11.778
  18. Bozorgmehr M., Gurung S., Darzi S., Nikoo S., Kazemnejad S., Zarnani A. H., Gargett C. E. 2020. Endometrial and menstrual blood mesenchymal stem/stromal cells: biological properties and clinical application. Front Cell Dev. Biol. V. 8. P. 497. https://doi: 10.3389/fcell.2020.00497
  19. Brosens J. J., Bennett P. R., Abrahams V. M., Ramhorst R., Coomarasamy A., Quenby S., Lucas E. S., McCoy R.C. 2022. Maternal selection of human embryos in early gestation: insights from recurrent miscarriage. Semin. Cell Dev. Biol. V. 131. P. 14. https://doi.org/10.1016/j.semcdb.2022.01.007
  20. Brosens J. J., Salker M. S., Teklenburg G., Nautiyal J., Salter S., Lucas E. S., Steel J. H., Christian M., Chan Y. W., Boomsma C. M., Moore J. D., Hartshorne G. M., Sućurović S., Mulac-Jericevic B., Heijnen C. J., Quenby S., Koerkamp M. J., Holstege F. C., Shmygol A., Macklon N. S. 2014. Uterine selection of human embryos at implantation. Sci. Rep. V. 6: e3894. https://doi.org/10.1038/srep03894
  21. Cai S., Wu C., Yang W., Liang W., Yu H., Liu L. 2020. Recent advance in surface modification for regulating cell adhesion and behaviors. Nanotechnol. Rev. V. 9. P. 971. https://doi.org/10.1515/ntrev-2020-0076
  22. Carletti E., Motta A., Migliaresi C. 2011. Scaffolds for tissue engineering and 3D cell culture. Methods Mol. Biol. V. 695. P. 17. https://doi.org/10.1007/978-1-60761-984-0_2
  23. Carter A. M. 2018. Classics revisited: C. J. van der Horst on pregnancy and menstruation in elephant shrews. Placenta. V. 67. P. 24. https://doi.org/10.1016/j.placenta.2018.05.010
  24. Chan B. P., Leong K. W. 2008. Scaffolding in tissue engineering: general approaches and tissue-specific considerations. Eur. Spine J. V. 17. P. 467. https://doi.org/10.1007/s00586-008-0745-3
  25. Chen J. C., Roan N. R. 2015. Isolation and culture of human endometrial epithelial cells and stromal fibroblasts. Bio Protoc. V. 5: e1623. http://doi.org/10.21769/bioprotoc.1623.
  26. Chua C. W., Shibata M., Lei M., Toivanen R., Barlow L. J., Bergren S. K., Badani K. K., McKiernan J.M., Benson M. C., Hibshoosh H., Shen M. M. 2014. Single luminal epithelial progenitors can generate prostate organoids in culture. Nat. Cell Biol. V. 16. P. 951. https://doi.org/10.1038/ncb3047
  27. Cindrova-Davies T., Zhao X., Elder K., Jones C. J.P., Moffett A., Burton G. J., Turco M. Y. 2021. Menstrual flow as a non-invasive source of endometrial organoids. Commun. Biol. V. 4. P. 1. https://doi.org/10.1038/s42003-021-02194-y
  28. Clevers H. 2016. Modeling development and disease with organoids. Cell. V. 165. P. 1586. https://doi.org/10.1016/j.cell.2016.05.082
  29. Critchley H. O.D., Babayev E., Bulun S. E., Clark S., Garcia-Grau I., Gregersen P. K., Kilcoyne A., Kim J. J., Lavender M., Marsh E. E., Matteson K. A., Maybin J. A., Metz C. N., Moreno I., Silk K., Sommer M., Simon C., Tariyal R., Taylor H. S., Wagner G. P., Griffith L. G. 2020a. Menstruation: science and society. Am. J. Obstet. Gynecol. V. 223. P. 624. https://doi.org/10.1016/j.ajog.2020.06.004
  30. Critchley H. O.D., Maybin J. A., Armstrong G. M., Williams A. R.W. 2020b. Physiology of the endometrium and regulation of menstruation. Physiol. Rev. V. 100. P. 1149. https://doi.org/10.1152/physrev.00031.2019
  31. Draper C. F., Duisters K., Weger B., Chakrabarti A., Harms A. C., Brennan L., Hankemeier T., Goulet L., Konz T., Martin F. P., Moco S., van der Greef J. 2018. Menstrual cycle rhythmicity: metabolic patterns in healthy women. Sci. Rep. V. 8. P. 14568. https://doi.org/10.1038/s41598-018-32647-0
  32. Dudley D. J., Hatasaka H. H., Branch D. W., Hammond E., Mitchell M. D. 1992. A Human endometrial explant system: validation and potential applications. Am. J. Obstetrics Gynecol. V. 167. P. 1774. https://doi.org/10.1016/0002-9378(92)91774-5
  33. Elder B. D., Kim D. H., Athanasiou K. A. 2010. Developing an articular cartilage decellularization process toward facet joint cartilage replacement. Neurosurgery. V. 66. P. 722. https://doi.org/10.1227/01.NEU.0000367616.49291.9F.
  34. Eritja N., Mirantes C., Llobet D., Yeramian A., Bergadà L., Dosil M. A., Domingo M., Matias-Guiu X., Dolcet X. 2013. Long-term estradiol exposure is a direct mitogen for insulin/EGF-primed endometrial cells and drives PTEN loss-induced hyperplasic growth. Am. J. Pathol. V. 183. P. 277. https://doi.org/10.1016/j.ajpath.2013.03.008
  35. Fasciani A., Bocci G., Jing Xu, Bielecki R., Greenblatt E., Leyland N., Casper R. F. 2003. Three-dimensional in vitro culture of endometrial explants mimics the early stages of endometriosis. Fertility Sterility. V. 80. P. 1137. https://doi.org/10.1016/S0015-0282(03)02164-2
  36. Fogle R. H., Li A., Paulson R. J. 2010. Modulation of HOXA10 and other markers of endometrial receptivity by age and human chorionic gonadotropin in an endometrial explant model. Fertility and Sterility. V. 93. P. 1255. https://doi.org/10.1016/j.fertnstert.2008.11.002.
  37. Francés-Herrero E., Lopez R., Hellström M., de Miguel-Gómez L., Herraiz S., Brännström M., Pellicer A., Cervelló I. 2022. Bioengineering trends in female reproduction: a systematic review. Hum. Reprod. Update. V. 28. P. 798. https://doi.org/10.1093/humupd/dmac025
  38. Funamoto S., Nam K., Kimura T., Murakoshi A., Hashimoto Y., Niwaya K., Kitamura S., Fujisato T., Kishida A. 2010. The use of high-hydrostatic pressure treatment to decellularize blood vessels. Biomaterials. V. 31. P. 3590. https://doi.org/10.1016/j.biomaterials.2010.01.073
  39. Gala K., Ghusn W., Acosta A. 2024. Precision medicine in bariatric procedures. Gastrointest. Endosc. Clin. N. Am. V. 34. P. 765. https://doi.org/10.1016/j.giec.2024.03.004
  40. Gao D., Vela I., Sboner A., Iaquinta P. J., Karthaus W. R., Gopalan A., Dowling C., Wanjala J. N., Undvall E. A., Arora V. K. et. al. 2014. Organoid cultures derived from patients with advanced prostate cancer. Cell. V. 159. Nо. 1. P. 176. https://doi: 10.1016/j.cell.2014.08.016
  41. Gargett C. E., Schwab K. E., Deane J. A. 2016.Endometrial stem/progenitor cells: the first 10 years. Hum. Reprod. Update. V. 22. P. 137. https://doi.org/10.1093/humupd/dmv051
  42. Gargett C. E., Schwab K. E., Zillwood R. M., Nguyen H. P., Wu D. 2009. Isolation and culture of epithelial progenitors and mesenchymal stem cells from human endometrium. Biol. Reprod. V. 80. P. 1136. https://doi.org/10.1095/biolreprod.108.075226
  43. Goetz L. H., Schork N. J. 2018. Personalized medicine: motivation, challenges, and progress. Fertil. Steril. V. 109. P. 952. https://doi.org/10.1016/j.fertnstert.2018.05.006
  44. Haycock J. W. 2011. 3D cell culture: a review of current approaches and techniques. Methods Mol. Biol. V. 695. P. 1. https://doi.org/10.1007/978-1-60761-984-0_1
  45. Hibaoui Y., Feki A. 2020. Organoid models of human endometrial development and disease. Front. Cell Dev. Biol. V. 8. 10.3389/fcell.2020.00084' target='_blank'>https://doi: 10.3389/fcell.2020.00084
  46. Huch M. Gehart H., van Boxtel R., Hamer K., Blokzijl F., Verstegen M. M., Ellis E., van Wenum M., Fuchs S. A., de Ligt J., van de Wetering M., Sasaki N., Boers S. J., Kemperman H., de Jonge J., Ijzermans J. N., Nieuwenhuis E. E., Hoekstra R., Strom S., Vries R. R., van der Laan L. J., Cuppen E., Clevers H. 2015. Long-term culture of genome-stable bipotent stem cells from adult human liver. Cell. V. 160. P. 299. https://doi.org/10.1016/j.cell.2014.11.050
  47. Ingram J. H., Korossis S., Howling G., Fisher J., Ingham E. 2007. The use of ultrasonication to aid recellularization of acellular natural tissue scaffolds for use in anterior cruciate ligament reconstruction. Tiss. Eng. V. 13. P. 1561. https://doi.org/10.1089/ten.2006.0362.
  48. Ivkovic A., Marijanovic I., Hudetz D., Porter R. M., Pecina M., Evans C. H. 2011. Regenerative medicine and tissue engineering in orthopaedic surgery. Front. Biosci. (Elite Ed.). V. 3. P. 923. https://doi.org/10.2741/e299
  49. Karthaus W. R., Iaquinta P. J., Drost J., Gracanin A., van Boxtel R., Wongvipat J., Dowling C. M., Gao D., Begthel H., Sachs N., Vries R. G.J., Cuppen E., Chen Y., Sawyers C. L., Clevers H. C. 2014. Identification of multipotent luminal progenitor cells in human prostate organoid cultures. Cell. V. 159. P. 163. https://doi.org/10.1016/j.cell.2014.08.017
  50. Kim J. J., Kurita T., Bulun S. E. 2013. Progesterone action in endometrial cancer, endometriosis, uterine fibroids, and breast cancer. Endocr. Rev. V. 34. P. 130. https://doi.org/10.1210/er.2012-1043
  51. Kim M. R., Park D. W., Lee J. H., Choi D. S., Hwang K. J., Ryu H. S., Min C. K. 2005. Progesterone-dependent release of transforming growth factor-beta1 from epithelial cells enhances the endometrial decidualization by turning on the Smad signalling in stromal cells. Mol. Hum. Repr. V. 11. P. 801. https://doi.org/10.1093/molehr/gah240
  52. Kim S. M., Kim J. S. 2017. A review of mechanisms of implantation. Dev. Reprod. V. 21. P. 351. https://doi.org/10.12717/DR.2017.21.4.351
  53. Kirk D., King R. J.B., Heyes J., Peachey L, Hirsch P. J., Taylor R. W.T. 1978. Normal human endometrium in cell culture. In Vitro. V. 14. P. 651. https://doi.org/10.1007/BF02616162
  54. Komiya Y., Habas R. 2008. Wnt signal transduction pathways. Organogenesis. V. 4. P. 68. https://doi.org/10.4161/org.4.2.5851
  55. Kuokkanen S., Chen B., Ojalvo L., Benard L., Santoro N., Pollard J. W. 2010. Genomic profiling of microRNAs and messenger RNAs reveals hormonal regulation in microRNA expression in human endometrium. Biol. Reprod. V. 82. P. 791. https://doi.org/10.1095/biolreprod.109.081059
  56. Lacconi V., Massimiani M., Carriero I., Bianco C., Ticconi C., Pavone V., Alteri A., Muzii L., Rago R., Pisaturo V., Campagnolo L. 2024. When the embryo meets the endometrium: identifying the features required for successful embryo implantation. Int. J. Mol. Sci. V. 25: 2834. https://doi.org/10.3390/ijms25052834
  57. Lee J., Jung H., Park N. 2019. Induced osteogenesis in plants decellularized scaffolds. Sci. Rep. V. 9: 20194. https://doi.org/10.1038/s41598-019-56651-0
  58. Li Q., Kannan A., DeMayo F.J., Lydon J. P., Cooke P. S., Yamagishi H., Srivastava D., Bagchi M. K., Bagchi I. C. 2011. The antiproliferative action of progesterone in uterine epithelium is mediated by Hand2. Science. V. 331. P. 912. https://doi.org/10.1126/science.1197454
  59. López de Andrés J., Ruiz-Toranzo M., Antich C., Chocarro-Wrona C., López-Ruíz E., Jiménez G., Marchal J. A. 2022. Biofabrication of a tri-layered 3D-bioprinted CSC-based malignant melanoma model for personalized cancer treatment. Biofabrication. V. 15: 035016. https://doi.org/10.1088/1758-5090/AC8DC6
  60. Macklon N. S., Brosens J. J. 2014. The human endometrium as a sensor of embryo quality. Biol. Reprod. V. 91. P. 98. https://doi.org/10.1095/biolreprod.114.122846
  61. Mao S., He J., Zhao Y., Liu T., Xie F., Yang H., Mao Y., Pang Y., Sun W. 2020. Bioprinting of patient-derived in vitro intrahepatic cholangiocarcinoma tumor model: establishment, evaluation and anti-cancer drug testing. Biofabrication. V. 12: 045014. https://doi.org/10.1088/1758-5090/aba0c3
  62. Massimiani M., Lacconi V., La Civita F., Ticconi C., Rago R., Campagnolo L. 2019. Molecular Signaling Regulating Endometrium-Blastocyst Crosstalk. Int. J. Mol. Sci. V. 21: 23. https://doi: 10.3390/ijms21010023.
  63. Meseguer M., Aplin J. D., Caballero-Campo P., O’Connor J. E., Martín J. C., Remohí J., Pellicer A., Simón C. 2001. Human endometrial mucin MUC1 is up-regulated by progesterone and down-regulated in vitro by the human blastocyst. Biol. Reprod. V. 64. P. 590. https://doi.org/10.1095/biolreprod64.2.590
  64. Miao Sun, An Liu, Xiaofu Yang, Jiaxing Gong, Mengfei Yu, Xinhua Yao, Huiming Wang, Yong He. 2021. 3D cell culture — can it be as popular as 2D cell culture? Adv. NanoBiomed. Res. V. 1: 2000066. https://doi.org/10.1002/anbr.202000066
  65. Min D., Lee W., Bae I.-H., Lee T. R., Croce P., Yoo S-S. 2018. Bioprinting of biomimetic skin containing melanocytes. Exp. Dermatol. V. 27. P. 453. https://doi.org/10.1111/exd.13376
  66. Modulevsky D. J., Cuerrier C. M., Pelling A. E. 2016. Biocompatibility of subcutaneously implanted plant-derived cellulose biomaterials. PLoS One. V. 11: e0157894. https://doi.org/10.1371/journal.pone.0157894
  67. Modulevsky D. J., Lefebvre C., Haase K., Al-Rekabi Z., Pelling A. E. 2014. Apple derived cellulose scaffolds for 3D mammalian cell culture. PLos One. V. 9: e97835. https://doi.org/10.1371/journal.pone.0097835
  68. Montin D., Santilli V., Beni A., Costagliola G., Martire B., Mastrototaro M. F., Ottaviano G., Rizzo C., Sgrulletti M., Miraglia Del Giudice M., Moschese V. 2024. Towards personalized vaccines. Front. Immunol. V. 3: 1436108. https://doi: 10.3389/fimmu.2024.1436108
  69. Murphy A. R., Wiwatpanit T., Lu Z., Davaadelger B., Kim J. J. 2019. Generation of multicellular human primary endometrial organoids. J. Vis. Exp. V. 152: e10.3791/60384. https://doi.org/10.3791/60384
  70. Muruganandan S., Fan X., Dhal S., Nayak N. R. 2020. Development of A 3D tissue slice culture model for the study of human endometrial repair and regeneration Biomol. V. 14. P. 136. https://doi.org/10.3390/biom10010136
  71. Muter J., Kong C. S., Brosens J. J. 2021.The role of decidual subpopulations in implantation, menstruation and miscarriage. Front. Reprod. Health. V. 3: 804921. https://doi.org/10.3389/frph.2021.804921
  72. Muter J., Lynch V. J., McCoy R.C., Brosens J. J. 2023. Human embryo implantation. Development. V. 150: 201507. https://doi.org/10.1242/dev.201507
  73. Noor N., Shapira A., Edri R., Gal I., Wertheim L., Dvir T. 2019. 3D printing of personalized thick and perfusable cardiac patches and hearts. Adv. Sci. V. 6: 1900344. https://doi.org/10.1002/advs.201900344
  74. Nothdurfter D., Ploner C., Coraça-Huber D.C., Wilflingseder D., Müller T., Hermann M., Hagenbuchner J., Ausserlechner M. J. 2022. 3D bioprinted, vascularized neuroblastoma tumor environment in fluidic chip devices for precision medicine drug testing. Biofabrication. V. 14: 035002. https://doi.org/10.1088/1758-5090/ac5fb7
  75. Olalekan S. A., Burdette J. E., Getsios S., Woodruff T. K., Kim J. J. 2017. Development of a novel human recellularized endometrium that responds to a 28-day hormone treatment. Biol. Reprod. V. 96. P. 971. https://doi.org/10.1093/biolre/iox039
  76. Owen M. C., Kopecky B. J. 2024. Targeting macrophages in organ transplantation: a step toward personalized medicine. Transplantation. V. 108. P. 2045. https://doi.org/10.1097/TP.0000000000004978
  77. Park Se-Ra, Kim Soo-Rim, Im Jae Been, Hum Park Chan, Lee Hwa-Yong, Hong In-Sun. 2021. 3D stem cell-laden artificial endometrium: successful endometrial regeneration and pregnancy. Biofabrication. V. 13: 045012. https://doi.org/10.1088/1758-5090/ac165a
  78. Phan N. V., Wright T., Rahman M. M., Xu J., Coburn J. M. 2020. In vitro biocompatibility of decellularized cultured plant cell derived matrices. ACS Biomater. Sci. Eng. V. 6. P. 822. https://doi.org/10.1021/acsbiomaterials.9b00870
  79. Pollheimer J., Knofler M. 2005. Signalling pathways regulating the invasive differentiation of human trophoblasts: A review. Placenta. V. 26. Suppl. SA. S. 21. https://doi.org/ 10.1016/j.placenta.2004.11.013
  80. Pretto C. M., Gaide Chevronnay H. P., Cornet P. B., Galant C., Delvaux D., Courtoy P. J., Marbaix E., Henriet P. 2008. Production of interleukin-1alpha by human endometrial stromal cells is triggered during menses and dysfunctional bleeding and is induced in culture by epithelial interleukin-1alpha released upon ovarian steroids withdrawal. J. Clin. Endocrinol. Metab. V. 10. P. 4126. https://doi.org/10.1210/jc.2007-2636
  81. Punyadeera C., Dassen H., Klomp J., Dunselman G., Kamps R., Dijcks F., Ederveen A., de Goeij A., Groothuis P. 2005. Oestrogen-modulated gene expression in the human endometrium. Cell. Mol. Life Sci. V. 62. P. 239. https://doi.org/10.1007/s00018-004-4435-y
  82. Ruiz-Alonso M., Blesa D. Simón C. 2012. The genomics of the human endometrium. Biochim. Biophys. Acta Mol. Basis Dis. V. 1822. P. 1931. https://doi.org/10.1016/j.bbadis.2012.05.004
  83. Sato T., Stange D. E., Ferrante M., Vries R. G., Van Es J. H., Van den Brink S., Van Houdt W. J., Pronk A., Van Gorp J., Siersema P. D., Clevers H. 2011. Long-term expansion of epithelial organoids from human colon, adenoma, adenocarcinoma, and Barrett’s epithelium. Gastroenterol. V. 141. P. 1762—1772. https://doi.org/10.1053/j.gastro.2011.07.050
  84. Sawada K., Terada D., Yamaoka T., Kitamura S., Fujisato T. 2008. Cell removal with supercritical carbon dioxide for acellular artificial tissue. J. Chem. Technol. Biotechnol. V. 83. P. 943. https://doi.org/10.1002/jctb.1899
  85. Schafer W. R., Fischer L., Roth K., Jullig A.K, Stuckenschneider J. E., Schwartz P., Weimer M., Orlowska-Volk M., Hanjalic-Beck A., Kranz I., Deppert W. R., Zahradnik H. P. 2011. Critical evaluation of human endometrial explants as an ex vivo model system: a molecular approach. Mol. Human Reprod. V. 17. P. 255. https://doi.org/10.1093/molehr/gaq095
  86. Schutte S. C., James C. O., Sidell N. Taylor R. N. 2015. Tissue-engineered endometrial model for the study of cell–cell interactions. Reprod. Sci. V. 22. P. 308—315. https://doi.org/10.1177/1933719114542008
  87. Singer C. F., Marbaix E., Kokorine I., Lemoine P., Donnez J., Eeckhout Y., Courtoy P. J. 1997. Paracrine stimulation of interstitial collagenase (MMP-1) in the human endometrium by interleukin 1alpha and its dual block by ovarian steroids. Proc. Natl. Acad. Sci. USA. V. 19: 10341. https://doi.org/10.1073/pnas.94.19.10341
  88. Stavreus-Evers A., Hovatta O., Eriksson H., Landgren B.-M. 2003. Development and characterization of an endometrial tissue culture system. Reprod. BioMed. Online V. 7. P. 243. https://doi.org/10.1016/S1472-6483(10)61759-2
  89. Talbi S., Hamilton A. E., Vo K. C., Tulac S., Overgaard M. T., Dosiou C., Le Shay N., Nezhat C. N., Kempson R., Lessey B. A., Nayak N. R., Giudice L. C. 2006. Molecular phenotyping of human endometrium distinguishes menstrual cycle phases and underlying biological processes in normo-ovulatory women. Endocrinol. V. 147. P. 1097. https://doi.org/10.1210/en.2005-1076
  90. Topol L., Jiang X., Choi H., Garrett-Beal L., Carolan P. J., Yang Y. 2003. Wnt-5a inhibits the canonical Wnt pathway by promoting GSK-3-independent β-catenin degradation. J. Cell Biol. V. 162. P. 899. https://doi.org/10.1083/jcb.200303158
  91. Turco M. Y., Gardner L., Hughes J., Cindrova-Davies T., Gomez M. J., Farrell L., Hollinshead M., Marsh S. G.E., Brosens J. J., Critchley H. O., Simons B. D., Hemberger M., Koo B. K., Moffett A., Burton G. J. 2017. Long-term, hormone-responsive organoid cultures of human endometrium in a chemically defined medium. Nat. Cell Biol. V. 5. P. 568. https://doi.org/10.1038/ncb3516
  92. Villalón-García I., Álvarez-Córdoba M., Suárez-Rivero J.M., Povea-Cabello S., Talaverón-Rey M., Suárez-Carrillo A., Munuera-Cabeza M., Sánchez-Alcázar J.A. 2020. Precision medicine in rare diseases. Diseases. V. 8. P. 42. https://doi.org/10.3390/diseases8040042
  93. Wang H., Bocca S., Anderson S., Yu L., Rhavi B. S., Horcajadas J., Oehninger S. 2013. Sex steroids regulate epithelial-stromal cell cross talk and trophoblast attachment invasion in a three-dimensional human endometrial culture system. Tiss. Eng. C. Methods. V. 9. P. 676. https://doi.org/10.1089/ten.TEC.2012.0616
  94. Weiss P., Taylor A. C. 1960. Reconstitution of complete organs from single-cell suspensions of chick embryos in advanced stages of differentiation. Proc. Natl. Acad. Sci. V. 46. P. 1177. https://doi.org/10.1073/pnas.46.9.1177
  95. Wetendorf M., DeMayo F.J. 2012. The progesterone receptor regulates implantation, decidualization, and glandular development via a complex paracrine signaling network. Mol. Cell Endocrinol. V. 357. P. 108. https://doi.org/10.1016/j.mce.2011.10.028
  96. Wiwatpanit T., Murphy A. R., Lu Z., Urbanek M., Burdette J. E., Woodruff T. K., Kim J. J. 2020. Scaffold-free endometrial organoids respond to excess androgens associated with polycystic ovarian syndrome. J. Clin. Endocrinol. Metab. V. 105. P. 769. https://doi.org/10.1210/clinem/dgz100
  97. Yui S., Nakamura T., Sato T., Nemoto Y., Mizutani T., Zheng X., Ichinose S., Nagaishi T., Okamoto R., Tsuchiya K., Clevers H., Watanabe M. 2012. Functional engraftment of colon epithelium expanded in vitro from a single adult Lgr5(+) stem cell. Natl. Med. V. 18. P. 618. https://doi.org/10.1038/nm.2695
  98. Zhi-Yue Gu, Shuang-Zheng Jia, Song Liu, Jin-Hua Leng. 2020. Endometrial organoids: a new model for the research of endometrial-related diseases. Biol. Reprod. V. 103. P. 918. https://doi.org/10.1093/biolre/ioaa124
  99. Zieba A., Sjöstedt E., Olovsson M., Fagerberg L., Hallström B. M., Oskarsson L., Edlund K., Tolf A., Uhlen M., Ponten F. 2015. The human endometrium-specific proteome defined by transcriptomics and antibody-based profiling. OMICS A J. Integr. Biol. V. 19. P. 659. https://doi.org/10.1089/omi.2015.0115

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Schematic representation of the dynamics of endometrial thickness and levels of major ovarian hormones during the menstrual cycle (Draper et al., 2018).

Жүктеу (339KB)
3. Fig. 2. Endometrial cells in a two-dimensional (2D) culture: a — monolayer culture of endometrial stromal cells obtained and cultured according to the described protocol (Zemelko et al., 2011); b — monolayer culture of endometrial epithelial cells obtained and cultured according to the described protocol (Chen, Roan 2015). Authors’ own results.

Жүктеу (193KB)

© Russian Academy of Sciences, 2025