Influence of the Physical and Chemical Properties of Particles on the Thermal Conductivity of Polymer Composite Materials

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The dependences between thermal conductivity and the maximum volume fraction of the filler in heat sink compound on the size, morphology, specific surface area, and particle porosity, as well as the contact angle with silicone, of various materials such as aluminum oxides, silicon, magnesium, aluminum and boron nitrides, silicon carbide, metals (aluminum, copper, nickel), and carbon materials (graphite and diamond) is presented. The quality of the produced heat sink compound is not governed by any single property listed, but rather by the combination of properties such as morphology and specific surface area (or porosity) of the particles. For each type of filler particle shape, an inversely proportional relationship exists between the specific surface area and the maximum volume fraction of the polymer. Specific aspects were discussed regarding the effect of the material’s phase and chemical composition on the angle of wettability by polydimethylsiloxane.

About the authors

R. A. Shishkin

Institute of Solid State Chemistry, Ural Branch, Russian Academy of Sciences

Author for correspondence.
Email: shishkin@ihim.uran.ru
620990, Yekaterinburg, Russia

References

  1. Lee G.W., Park M., Kim J., Lee J.I., Yoon H.G. Enhanced Thermal Conductivity of Polymer Composites Filled with Hybrid Filler // Compos. Part A Appl. Sci. 2006. V. 37. № 5. P. 727.
  2. Chen H., Ginzburg V.V., Yang J., Yang Y., Liu W., Huang Y., Du L., Chen B. Thermal Conductivity of Polymer-based Composites: Fundamentals and Applications // Prog. Polym. Sci. 2016. V. 59. P. 41.
  3. Zemlyanskaya A.P., Shishkin R.A., Kudyakova V.S., Yuferov Y.V., Zykov F.M. The Study of TIM Polymer Composite Materials Thermal Conductivity // AIP Conf. Proc. 2019. V. 2174. № 1. P. 020191.
  4. Ногин Д.А., Салов А.В., Шишкин Р.А., Елагин А.А., Баранов М.В., Бекетов А.Р., Кудякова В.С., Стоянов О.В. Теплопроводная паста с наноразмерным наполнителем для LED светильников повышенной мощности // Вестн. Казанск. технол. ун-та. 2014. Т. 17. № 16. С. 92.
  5. Дрекседж П., Бекедаль П., Колпаков А. Применение термопасты в силовой электронике: практические аспекты. Основные положения // Силовая электроника. 2018. Т. 6. № 75. С. 50.
  6. Колпаков А. Возвращаемся к термопасте // Силовая электроника. 2015. Т. 3. № 54. С. 90.
  7. Елагин А.А., Шишкин Р.А., Баранов М.В., Бекетов А.Р., Стоянов О.В. Обзор теплопроводных материалов и термопаст на их основе // Вестн. Казанск. технол. ун-та. 2013. Т. 16. № 4. С. 132.
  8. Кудж С.А., Кондратенко В.С., Кадомкин В.В., Высоканов А.А. Анализ эффективности теплоотвода в тепловыделяющих устройствах при использовании различных термоинтерфейсов // Изв. вузов. Электроника. 2020. Т. 25. № 4. С. 347.
  9. Huang X., Jiang P. A Review of Dielectric Polymer Composites with High Thermal Conductivity // IEEE Electr. Insul. Mag. 2011. V. 27. № 4. P. 8.
  10. Jin Z., Liang F., Lu W., Dai J., Meng S., Lin Z. Effect of Particle Sizes of Nickel Powder on Thermal Conductivity of Epoxy Resin-Based Composites under Magnetic Alignment // Polymers. 2019. V. 11. № 12. P. 1990.
  11. Hong J.P., Yoon S.W., Hwang T., Oh J.S., Hong S.C., Lee Y., Nam J.D. High Thermal Conductivity Epoxy Composites with Bimodal Distribution of Aluminum Nitride and Boron Nitride Fillers // Thermochim. Acta. 2012. V. 537. P. 70.
  12. Xu Y., Chung D.D.L. Increasing the Thermal Conductivity of Boron Nitride and Aluminum Nitride Particle Epoxy-matrix Composites by Particle Surface Treatments // Compos. Interfaces. 2000. V. 7. № 4. P. 243.
  13. Liu Z., Huang J., Cao M., Jiang G., Hu J., Chen Q. Preparation of Binary Thermal Silicone Grease and Its Application in Battery Thermal Management // Mater. 2020. V. 13. № 21. P. 1.
  14. Huang Y., Ellingford C., Bowen C., McNally Y., Wu D., Wan C. Tailoring the Electrical and Thermal Conductivity of Multi-Component and Multi-Phase Polymer Composites // Int. Mater. Rev. 2020. V. 65. № 3. P. 129.
  15. Mehra N., Mu L., Ji T., Yang X., Kong J., Gu J., Zhu J. Thermal Transport in Polymeric Materials and Across Composite Interfaces // Appl. Mater. Today. 2018. V. 12. P. 92.
  16. Choi S., Kim J. Thermal Conductivity of Epoxy Composites with a Binary-Particle System of Aluminum Oxide and Aluminum Nitride Fillers // Compos. B: Eng. 2013. V. 51. P. 140.
  17. Agrawal A., Satapathy A. Thermal and Dielectric Behavior of Epoxy Composites Filled with Ceramic Micro Particulates // J. Compos. Mater. 2014. V. 48. № 30. P. 3755.
  18. Shishkin R.A., Zemlyanskaya A.P., Beketov A.R. High Performance Thermal Grease with Aluminum Nitride Filler and an Installation for Thermal Conductivity Investigation // Solid State Phenom. 2018. V. 284. P. 48.
  19. Yung K.C., Liem H. Enhanced Thermal Conductivity of Boron Nitride Epoxy-Matrix Composite Through Multi-Modal Particle Size Mixing // Appl. Polym. Sci. 2007. V. 106. № 6. P. 3587.
  20. Feng C.P., Yang L.Y., Yang J., Bai L., Bao R.Y., Liu Z.Y., Yang M.B., Lan H.B., Yang W. Recent Advances in Polymer-based Thermal Interface Materials for Thermal Management: A Mini-Review // Compos. Commun. 2020. V. 22. P. 100528.
  21. Swamy M.C.K., Satyanarayan. A Review of the Performance and Characterization of Conventional and Promising Thermal Interface Materials for Electronic Package Applications // J. Electron. Mater. 2019. V. 48. № 12. P. 7623.
  22. Wang T., Wang M., Fu L. et al. Enhanced Thermal Conductivity of Polyimide Composites with Boron Nitride Nanosheets // Sci. Rep. 2018. V. 8. № 1. P. 1557.
  23. Liang W., Ge X., Ge J., Li T., Zhao T., Chen X., Zhang M., Ji J., Pang X., Liu R. Three-dimensional Heterostructured Reduced Graphene Oxide-Hexagonal Boron Nitride-Stacking Material for Silicone Thermal Grease with Enhanced Thermally Conductive Properties // Nanomater. 2019. V. 9. № 7. P. 938.
  24. Czyzewski J., Rybak A., Gaska K., Sekula R., Kapusta C. Modelling of Effective Thermal Conductivity of Composites Filled with Core-Shell Fillers // Mater. 2020. V. 13. № 23. P. 1.
  25. He X., Wang Y. Synergistic Effects on the Enhancement of Thermal Conductive Properties of Thermal Greases // J. Appl. Polym. Sci. 2019. V. 136. № 27. P. 47726.
  26. Han Z., Fina A. Thermal Conductivity of Carbon Nanotubes and Their Polymer Nanocomposites: A Review // Prog. Polym. Sci. 2011. V. 36. № 7. P. 914.
  27. Kang H., Kim H.J., Park S.H., Yang J.H., Huh S. A Study on the Thermal Properties of Thermal Grease with Copper Nanopowders // IOP Conf. Ser. Mater. Sci. Eng. 2020. V. 842. № 1.
  28. Yu S., Lee J.W., Han T.H., Park C., Kwon Y., Hong S.M., Koo C.M. Copper Shell Networks in Polymer Composites for Efficient Thermal Conduction // ACS Appl. Mater. Interfaces. 2013. V. 5. № 22. P. 11618.
  29. Kang H., Kim H., An J., Choi S., Yang J., Jeong H., Huh S. Thermal Conductivity Characterization of Thermal Grease Containing Copper Nanopowder // Mater. 2020. V. 13. № 8. P. 1893.
  30. Yoo Y., Lee H.L., Ha S.M., Jeon B.K., Won H.C., Lee S.G. Effect of Graphite and Carbon Fiber Contents on the Morphology and Properties of Thermally Conductive Composites Based on Polyamide 6 // Polym. Int. 2014. V. 63. № 1. P. 151.
  31. Zhou T., Wang X., Cheng P., Wang T., Xiong D., Wang X. Improving the Thermal Conductivity of Epoxy Resin by the Addition of a Mixture of Graphite Nanoplatelets and Silicon Carbide Microparticles // EXPRESS Polym. Lett. 2013. V. 7. № 7. P. 585.
  32. Fu H., Li M., Wang H., Chen Y., Yan C., Lin C.T., Jiang N., Yu J. Graphene as a Nanofiller for Enhancing the Tribological Properties and Thermal Conductivity of Base Grease // RSC Adv. 2019. V. 9. № 72. P. 42481.
  33. Chen C., He Y., Liu C.Q., Xie H.Q., Yu W. Comprehensive Excellent Performance for Silicone-Based Thermal Interface Materials Through the Synergistic Effect between Graphene and Spherical Alumina // J. Mater. Sci.: Mater. Electron. 2020. V. 31. № 6. P. 4642.
  34. Еркимбаев А.О., Зицерман В.Ю., Кобзев Г.А. Систематизация данных по физико-химическим свойствам и применению углеродных наноструктур // ТВТ. 2010. Т. 48. № 6. С. 869.
  35. Бабаев А.А., Алиев А.М., Теруков Е.И., Филиппов А.К. Теплофизические свойства полимерного композита на основе углеродных многостенных нанотрубок, полученных методом электроспиннинга // ТВТ. 2017. Т. 55. № 4. С. 513.
  36. Хвесюк В.И., Скрябин А.С. Теплопроводность наноструктур // ТВТ. 2017. Т. 55. № 3. С. 447.
  37. Козлов Г.В., Долбин И.В. Вязкость расплава нанокомпозитов полимер/углеродные нанотрубки. Аналогия с полимерным раствором // ТВТ. 2019. Т. 57. № 3. С. 472.
  38. Атлуханова Л.Б., Козлов Г.В., Долбин И.В. Структурная модель вязкости расплавов полимерных нанокомпозитов: углеродные нанотрубки как макромолекулярные клубки // ТВТ. 2020. Т. 58. № 2. С. 306.
  39. Shishkin R.A. Investigation of Thermal Greases with Hybrid Fillers and Its Operational Bench Test // J. Electron. Mater. 2022. V. 51. № 3. P. 1189.
  40. Li X.Y., Zhao X.L., Guo X.Y., Shao Z.M., Ai M.X. New Theoretical Equation for Effective Thermal Conductivity of Two-Phase Composite Materials // Mater. Sci. Technol. 2013. V. 28. № 5. P. 620.
  41. Okamoto S., Ishida H. A New Theoretical Equation for Thermal Conductivity of Two-Phase Systems // J. Appl. Polym. Sci. 1999. V. 72. P. 1689.
  42. Angle J.P., Wang Z., Dames C., Mecartney M.L. Comparison of Two-Phase Thermal Conductivity Models with Experiments on Dilute Ceramic Composites // J. Am. Ceram. Soc. 2013. V. 96. № 9. P. 2935.
  43. Yu W., Yin L., Zhao J., Xia L., Chen L. Exceptionally High Thermal Conductivity of Thermal Grease: Synergistic Effects of Graphene and Alumina // Int. J. Therm. Sci. 2015. V. 91. P. 76.
  44. Эпов М.И., Терехов В.И., Низовцев М.И., Шурина Э.Л., Иткина Н.Б., Уколов Е.С. Эффективная теплопроводность дисперсных материалов с контрастными включениями // ТВТ. 2015. Т. 53. № 1. С. 48.
  45. Elagin A.A., Shishkin R.A., Baranov M.V., Bekerov A.R. Aluminum Nitride. Preparation Methods (Review) // Refract. Ind. Ceram. 2013 V. 53. № 6. P. 395.
  46. Vadivelu M.A., Kumar C.R., Joshi G.M. Polymer Composites for Thermal Management: a Review // Composite Interfaces. 2016. V. 23. № 9. P. 847.
  47. Alothman Z.A. A Review: Fundamental Aspects of Silicate Mesoporous Materials // Materials. 2012. V. 12. № 5. P. 2874.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (166KB)
3.

Download (80KB)
4.

Download (74KB)
5.

Download (276KB)
6.

Download (1MB)
7.

Download (621KB)
8.

Download (89KB)
9.

Download (1MB)

Copyright (c) 2023 Р.А. Шишкин