Тестирование современных моделей суррогатов авиационных топлив на экспериментальных данных по фракционной разгонке

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

В работе предложена математическая модель фракционной разгонки суррогатов авиационных углеводородных топлив, базирующаяся на кубическом уравнении состояния Пенга–Робинсона. С применением разработанной модели выполнено моделирование фракционной разгонки современных суррогатов авиационных коммерческих нефтяных и альтернативных топлив, предложенных в литературе. Полученные результаты сопоставлены с экспериментальными данными по фракционной разгонке авиационных топлив. Выделены суррогаты, в наибольшей степени соответствующие экспериментальным данным.

About the authors

А. М. Савельев

Центральный институт авиационного моторостроения им. П.И. Баранова

Author for correspondence.
Email: amsavelev@ciam.ru
Russian Federation, Москва

В. А. Савельева

Центральный институт авиационного моторостроения им. П.И. Баранова

Email: amsavelev@ciam.ru
Russian Federation, Москва

С. А. Торохов

Центральный институт авиационного моторостроения им. П.И. Баранова

Email: amsavelev@ciam.ru
Russian Federation, Москва

С. А. Щепин

Центральный институт авиационного моторостроения им. П.И. Баранова

Email: amsavelev@ciam.ru
Russian Federation, Москва

References

  1. Present and Future Aircraft Noise and Emissions Trends: Working Paper A37-WP/26, EX/9, 21/7/10. Int. Civil Aviation Organization, 2010. 9 p.
  2. Палкин В.А. Обзор работ за рубежом по применению альтернативных видов топлива в авиации // Авиационные двигатели. 2021. № 4(13). С. 63.
  3. Скибин В.А., Солонин В.И., Палкин В.А. Работы ведущих авиадвигателестроительных компаний в обеспечение создания перспективных авиационных двигателей (аналитический обзор). М.: ЦИАМ, 2010. 673 с.
  4. Палкин В.А. Обзор работ в США и Европе по авиационным двигателям для самолетов гражданской авиации 2020–2040-х годов // Авиационные двигатели. 2019. № 3(4). С. 63.
  5. Renyua F., Man Z. Low Emission Commercial Aircraft Engine Combustor Development in China: From Airworthiness Requirements to Combustor Design // Procedia Engineering. 2011. V. 17. P. 618.
  6. UltraFan. https://www.rolls-royce.com/innovation/ultrafan.aspx
  7. Strategic Implementation Plan. NASA, 2019. 66 p. https://www.nasa.gov/sites/default/files/atoms/files/sip-2019-v7-web.pdf
  8. Annex 16. Environmental Protection. V. II. Aircraft Engine Emissions. 4th ed., July 2017. https://store.icao.int/en/annex-16-environmental-protection-volume-ii-aircraft-engine-emissions
  9. YJ-2030: Candidate Engine for a Supersonic Business Jet. Undergraduate Engine Design Competition. AIAA Foundation, 2019–2020. https://www.aiaa.org/docs/default-source/uploadedfiles/education-and-careers/university-students/design-competitions/winning-reports-2020/1st-place-2020_georgia_tech_engine_design_report.pdf?sfvrsn=df105ee8_2
  10. Eggels I.R., Doerr T. Gas Turbine Combustion Modelling. Lean Combustion and Fuels. Rolls-Royce Deutschland Ltd & co KG, Germany. Australian Combustion Summer School, Sydney, 16–21 December 2018. https://www.anz-combustioninstitute.org/local/lecturenotes/ACSS2018/Day4-L2-Eggels-Turbines-Fuels-ACSS2018.pdf
  11. Herbon J., Aicholtz J., Hsieh S-Y., Viars P., Birmaher S., Brown D., Patel N., Carper D., Cooper C., Fitzgerald R., Pandalai R., Hong Z. N+2 Advanced Low NOx Combustor Technology Final Report. NASA/CR–2017-219410. Cincinnati, Ohio: GE Aviation, 2017.
  12. Dagaut P., Reuillon M., Cathonnet M., Voisin D. High Pressure Oxidation of Normal Decane and Kerosene in Dilute Conditions from Low to High Temperature // J. Chim. Phys. 1995. V. 92. P. 47.
  13. Lindstedt R.P., Maurice L.Q. Detailed Chemical-Kinetic Model for Aviation Fuels // JPP. 2000. V. 16. № 2. P. 187.
  14. Battin-Leclerc F., Fournet R., Glaude P.A., Judenherc B., Warth V., Côme G.M., Scacchi G. Modeling of the Gas-phase Oxidation of n-decane from 550 to 1600 K // Proc. Combustion Institute. 2000. V. 28. P. 1597.
  15. Dean A.J., Penyazkov O.G., Sevruk K.L., Varatharajan B. Autoignition of Surrogate Fuels at Elevated Temperatures and Pressures // Proc. Combust. Inst. 2007. V. 31. P. 2481.
  16. Dooley S., Won S.H., Heyne J., Farouk T.I., Ju Y., Dryer F. L., Kumar K., Hui X., Sung Ch.-J., Wang H., Oehlschlaeger M.A., Iyer V., Iyer S., Litzinger T.A., Santoro R.J., Malewicki T., Brezinsky K. The Experimental Evaluation of a Methodology for Surrogate Fuel Formulation to Emulate Gas Phase Combustion Kinetic Phenomena // Combust. Flame. 2012. V. 159. P. 1444.
  17. Матвеев С.Г. Разработка компонентного состава суррогата авиационного керосина для моделирования рабочего процесса камеры сгорания газотурбинного двигателя // Вестник Самарского университета. 2019. Т. 18. № 1. С. 78.
  18. Kim D., Martz J., Abdul-Nour A., Yu X., Jansons M., Violi A. A Six-component Surrogate for Emulating the Physical and Chemical Characteristics of Conventional and Alternative Jet Fuels and Their Blends // Combust. Flame. 2017. V. 179. P. 86.
  19. Mao Y., Yu L., Wu Z., Tao W., Wang S., Ruan C., Zhu L., Lu X. Experimental and Kinetic Modeling Study of Ignition Characteristics of RP-3 Kerosene over Low-to-high Temperature Ranges in a Heated Rapid Compression Machine and a Heated Shock Tube // Combust. Flame. 2019. V. 203. P. 157.
  20. Dryer F.L. Chemical Kinetic and Combustion Characteristics of Transportation Fuels // Proc. Combust. Inst. 2015. V. 35. P. 117.
  21. Yi R., Chen X., Chen C.P. Surrogate for Emulating Physicochemical and Kinetics Characteristics of RP-3 Aviation Fuel // Energy & Fuels. 2019. V. 33. № 4. P. 2872.
  22. Yu W., Yang W., Tay K., Zhao F. An Optimization Method for Formulating Model-based Jet Fuel Surrogate by Emulating Physical, Gas Phase Chemical Properties and Threshold Sooting Index (TSI) of Real Jet Fuel under Engine Relevant Conditions // Combust. Flame. 2018. V. 193. P. 192.
  23. Annex 16. Environmental Protection. V. III. Aeroplane CO2 Emission. 1st ed. July 2017. https://store.icao.int/en/annex-16-environmental-protection-volume-iii-aeroplane-co2-emissions
  24. Luo L., Liu Y.C. Variation of Gas Phase Combustion Properties of Complex Fuels During Vaporization: Comparison for Distillation and Droplet Scenarios // Proc. Combust. Institute. 2021. V. 38. № 2. P. 3287.
  25. Kim D., Violi A. On the Importance of Species Selection for the Formulation of Fuel Surrogates // Proc. Combustion Institute. 2021. V. 38. № 4. P. 5615.
  26. Савельев А.М., Савельева В.А., Кадочников И.Н., Козлов В.Е., Кострица С.А., Новаковский Д.В. Синтетические углеводородные топлива: развитие технологий, проблемы и перспективы применения в авиационных ГТД // Авиационные двигатели. 2023. № 2(19). C. 51.
  27. Иванова А. Декарбонизация встала на крыло. 2021. https://neftegaz.ru/analisis/ecology/706031-dekarbonizatsiya-vstala-na-krylo
  28. Annex 16. Environmental Protection. V. IV. Carbon Offsetting and Reduction Scheme for International Aviation (CORSIA). 1st ed. October 2018. https://store.icao.int/en/annex-16-environmental-protection-volume-iv-carbon-offsetting-and-reduction-scheme-for-international-aviation-corsia
  29. CORSIA Default Life Cycle Emissions Value for CORSIA Eligible Fuels https://www.icao.int/environmental-protection/CORSIA/Documents/CORSIA_Eligible_Fuels/ICAO%20document%2006% 20-%20Default%20Life%20Cycle%20Emissions% 20-%20June%202022.pdf
  30. Colket M., Heyne J., Rumizen M., Gupta M., Edwards T., Roquemore W., Andac G., Boehm R., Lovett J., Williams R., Condevaux J., Turner D., Rizk N., Tishkoff J., Li C., Moder J., Friend D., Sankaran V. Overview of the National Jet Fuels Combustion Program // AIAA Journal. 2017. V. 55. № 4. P. 1.
  31. Huber M.L., Smith B.L., Ott L.S., Bruno T.J. Synthetic Aviation Fuel S-8: Explicit Application of the Advanced Distillation Curve // Energy & Fuels. 2008. V. 22. № 2. P. 1104.
  32. Bruno T.J., Huber M.L. Evaluation of the Physicochemical Authenticity of Aviation Kerosene Surrogate Mixtures. Part 2: Analysis and Prediction of Thermophysical Properties // Energy & Fuels. 2010. V. 24. № 8. P. 4277.
  33. Huber M.L., Lemmon E.W., Bruno T.J. Surrogate Mixture Models for the Thermophysical Properties of Aviation Fuel Jet-A // Energy & Fuels. 2010. V. 24. № 6. P. 3565.
  34. Mueller C.J., Canella W.J., Bruno T.J., Bunting B., Dettman H.D., Franz J.A., Huber M.L., Natarajan M., Pitz W.J., Ratcliff M.A., Wright, K. Methodology for Formulating Diesel Surrogate Fuels with Accurate Compositional, Ignition Quality, and Volatility Characteristics // Energy & Fuels. 2012. V. 26. № 6. P. 3284.
  35. Huber M.L., Bruno T.J., Chirico R.D., Diky V., Kazakov A.F., Lemmon E.W., Muzny C.D., Frenkel M. Equations of State on Demand: Application for Surrogate Fuel Development // Int. J. Thermophys. 2011. V. 32. № 3. P. 596.
  36. Harries M., Huber M.L., Bruno T.J. A Distillation Approach to Phase Equilibrium Measurements of Multicomponent Fluid Mixtures // Energy & Fuels. 2019. V. 33. № 8. P. 7908.
  37. Slavinskaya N.A., Zizin A., Aigner M. On Model Design of a Surrogate Fuel Formulation // J. Eng. Gas Turbines Power. 2010. V. 132. № 11. 111501.
  38. Vella J.R., Marshall B.D. Prediction of the Distillation Curve and Vapor Pressure of Alcohol–Gasoline Blends Using Pseudocomponents and an Equation of State // Ind. Eng. Chem. Res. 2020. V. 59. № 17. P. 8361.
  39. Peng D.-Yu, Robinson D.B. A New Two-constant Equation of State // Ind. Eng. Chem., Fundam. 1976. V. 15. № 1. P. 59.
  40. Aspen Hybrid. https://www.aspentech.com/en/products/engineering/aspen-hysys
  41. DWSIM. https://dwsim.org/
  42. Honeywell’s UniSim Design Suite. https://hcenews.honeywell.com/unisim-design-free-trial
  43. Standard Test Method for Distillation of Petroleum Products at Atmospheric Pressure. ASTM Standard D 86-04b. West Conshocken, PA: American Society for Testing and Materials, 2004.
  44. Geber E., Rodriguez C., Karathanassis I.K., Lopez-Pintor D., Manin J., Pickett L., Gavaises M. A General Predictive Methodology for Fuel–Mixture Properties up to Supercritical Conditions // Fluid Phase Equilibria. 2023. V. 574. P. 113888.
  45. Models for Thermodynamic and Phase Equilibria Calculations / Ed. Sandler S.: N.Y.: Dekker, 1994, 686 p.
  46. Equations of State for Fluids and Fluid Mixtures / Eds. Sengers J.V., Kayser R.F., Peters C.J., White H.J. Amsterdam: Elsevier, 2000. 928 p.
  47. Poling B.E., Prausnitz J.M., O’Connell J.P. The Properties of Gases and Liquids. N.Y.: McGraw-Hill, 2001. 803 p.
  48. Брусиловский А.И. Фазовые превращения при разработке месторождений нефти и газа. М.: Грааль, 2002. 575 с.
  49. Smith J.M., Van Ness H.C., Abbott M.M., Swihart M.T. Introduction to Chemical Engineering Thermodynamics. N.Y.: McGraw-Hill Education, 2005. 769 p.
  50. Green D.W., Perry R.H. Perry’s Chemical Engineers’ Handbook. 8th ed. McGraw-Hill. 2008. 2735 p.
  51. Дэннис Д., Шнабель Р. Численные метода безусловной оптимизации и решения нелинейных уравнений. М.: Мир, 1988. 440 с.
  52. Термодинамические и теплофизические свойства продуктов сгорания. Спр. в 10 т. / Под ред. Глушко В.П. М.: ВИНИТИ АН СССР, 1971–1979.
  53. Chueh P.L., Prausnitz J.M. Vapor–Liquid Equilibria at High Pressures: Calculation of Partial Molar Volumes in Nonpolar Liquid Mixtures // American Institute Chem. Eng. J. V. 13. № 6. P. 1099.
  54. Nishiumi H., Arai T., Takeuchil K. Generalization of the Binary Interaction Parameter of the Peng–Robinson Equation of State by Component Family // Fluid Phase Equilibria. 1988. V. 42. P. 43.
  55. Bullin K.A., Krouskop P.E. Compositional Variety Complicates Processing Plans for US Shale Gas // Oil & Gas Journal. 2009. V. 107. № 10. P. 50.
  56. Davis P., Bertuzzi A., Gore T., Kurata F. Transactions of the American Institute of Mining, Metallurgical and Petroleum Engineers, 1954. Iss. 201 (Tech. Publ. № 3917) P. 37.
  57. Bruno T.J. Improvements in the Measurement of Distillation Curves. 1. A Composition-Explicit Approach // Ind. Eng. Chem. Res. 2006. V. 45. № 12. P. 4371.
  58. Bruno T.J., Smith B.L. Improvements in the Measurement of Distillation Curves. 2. Application to Aerospace/Aviation Fuels RP-1 and S-8 // Ind. Eng. Chem. Res. 2006. V. 45. № 12. P. 4381.
  59. Dooley S., Heyne J., Won S.H., Dievart P., Ju Y., Dryer F.L. On the Importance of a Cycloalkane Functionality in the Combustion Kinetics of a Real Liquid // Energy & Fuels. 2014. V. 28. № 12. P. 7649.
  60. Dooley S., Won S.H., Chaos M., Heyne J., Ju Y., Dryer F.L., Kumar K., Sung C.-J., Wang H., Oehlschlaeger M.A. A Jet Fuel Surrogate Formulated by Real Fuel Properties // Combust. Flame. 2010. V. 157. P. 2333.
  61. Won S.H., Haas F.M., Dooley S., Edwards T., Dryer F.L. Reconstruction of Chemical Structure of Real Fuel by Surrogate Formulation Based upon Combustion Property Targets // Combust. Flame. 2017. V. 183. P. 39.
  62. Kim D., Martz J., Violi A. A Surrogate for Emulating the Physical and Chemical Properties of Conventional Jet Fuel // Combust. Flame. 2014. V. 161. P. 1489.
  63. Kim D., Violi A. Hydrocarbons for the Next Generation of Jet Fuel Surrogates // Fuel. 2018. V. 228. P. 438.
  64. Iso-octane. https://pubchem.ncbi.nlm.nih.gov/source/hsdb/5682
  65. Zhao J., Zhang R. Proton Transfer Reaction Rate Constants between Hydronium Ion (H3O+) and Volatile Organic Compounds // Atmospheric Environment. 2004. V. 38. № 14. P. 2177.
  66. CRC Handbook of Chemistry and Physics / Ed. Lide D.L. 90th ed. Roca Baton: Taylor & Francis, 2009. 2804 p.
  67. Calculated electric dipole moments. https://cccbdb.nist.gov/dipole2x.asp
  68. Zapata J.C., McKemmish L.K. Computation of Dipole Moments: A Recommendation on the Choice of the Basis Set and the Level of Theory // J. Phys. Chem. A. 2020. V. 124. P. 7538.
  69. Edwards T. Reference Jet Fuels for Combustion Testing // 55th AIAA Aerospace Sciences Meeting, 9–13 January 2017, Grapevine, Texas. 58 p.
  70. Дубовкин Н.Ф. Физико-химические и эксплуатационные свойства реактивных топлив. M.: Химия, 1985. 239 c.
  71. Jia-Qi X., Jun-Jiang G., Ai-Ke L., Jian-Li W., Ning-Xin T., Xiang-Yuan L. Construction of Auto-ignition Mechanisms for the Combustion of RP-3 Surrogate Fuel and Kinetics Simulation // Acta Phys.-Chim. Sin. 2015. V. 31. № 4. P. 643.
  72. Zheng D., Yu W.-M., Zhong B.-J. RP-3 Aviation Kerosene Surrogate Fuel and the Chemical Reaction Kinetic Model // Acta Phys. – Chim. Sin. 2015. V. 31. № 4. P. 636.
  73. Civil Jet Fuel. Grades and Specifications. https://www.shell.com/business-customers/aviation/aviation-fuel/civil-jet-fuel-grades.html
  74. Yin Y.-C., Zhu, Y.-L., Xiong C.-J., Pan Y.-J. Preparation and Performance Evaluation of the RP-3 Modified Aviation Fuel // Chem. Eng. 2012. № 6. P. 10.
  75. Zschocke A., Scheuermann S., Ortner J. High Biofuel Blends in Aviation (HBBA). ENER/C2/2012/420-1, 2012. Interim report. https://aireg.de/wp-content/uploads/2015/03/20150327_studie.pdf
  76. Rumizen M.A. Qualification of Alternative Jet Fuels // Front. Energy Res. 2021. V. 9. https://www.frontiersin.org/articles/10.3389/fenrg.2021.760713/full
  77. Co-Processing Provision Approved and Added to ASTM 1655 Annex A1, Enables Renewable Feedstocks in Jet Fuel. 2018. https://www.caafi.org/news/NewsItem.aspx?id=10408
  78. Naik C., Puduppakkam K., Modak A., Meeks E., Wang Y., Feng Q., Tsotsis T. Detailed Chemical Kinetic Mechanism for Surrogates of Alternative Jet Fuels // Combust. Flame. 2011. V. 158. № 3. P. 434.
  79. Mawid M. Development of a Detailed Chemical Kinetic Mechanism for JP-8 & Fischer–Tropsch-derived Synthetic Jet Fuels // 43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, 2007. 24 p.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences