Mathematical modeling of binary coalescence process of oil-water emulsion droplets

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The paper presents an attempt to form a general approach to mathematical modeling of binary coalescence arising due to droplet deposition in a gravitational field based on the population balance equation, which can be further applied to predict the conditions of oil-water emulsion stratification. Using experimental curves of water content change over time in water-in-oil emulsions measured at different temperatures, four different ways of calculating the efficiency of binary coalescence are compared.

Full Text

Restricted Access

About the authors

S. A. Kiselev

JSC TomskNIPIneft

Author for correspondence.
Email: kiselevsa@tomsknipi.ru
Russian Federation, Tomsk

D. S. Poluboyartsev

JSC TomskNIPIneft

Email: kiselevsa@tomsknipi.ru
Russian Federation, Tomsk

I. R. Dolgov

JSC TomskNIPIneft

Email: kiselevsa@tomsknipi.ru
Russian Federation, Tomsk

I. V. Litvinets

JSC TomskNIPIneft

Email: kiselevsa@tomsknipi.ru
Russian Federation, Tomsk

A. A. Yashchuk

National Research Tomsk State University

Email: kiselevsa@tomsknipi.ru
Russian Federation, Tomsk

N. S. Belinskaya

National Research Tomsk Polytechnic University

Email: kiselevsa@tomsknipi.ru
Russian Federation, Tomsk

References

  1. Дунюшкин И.И. Сбор и подготовка скважинной продукции нефтяных месторождений. М.: Изд-во Нефть и газ РГУ им. И.М. Губкина, 2006.
  2. Байков Н.М., Позднышев Г.Н., Мансуров Р.И. Сбор и промысловая подготовка нефти, газа и воды. М.: Недра, 1981.
  3. Зейгман Ю.В., Колонских А.В. Оптимизация работы УЭЦН для предотвращения образований осложнений // Нефтегазовое дело. 2005. № 2. С. 1.
  4. Лутошкин Г.С. Сбор и подготовка нефти, газа и воды. М.: ТИД Альянс, 2005.
  5. Politova N.I., Tcholakova S., Tsibranska S., Denkov N.D., Muelheims K. Coalescence stability of water-in-oil drops: effects of drop size and surfactant concentration // Colloids Surf., A: Physicochem. Eng. Asp. 2017. V. 531. № 20. P. 32.
  6. Basheva E.S., Gurkov T.D., Ivanov I.B., Bantchev G.B., Campbell B., Borwankar R.P. Size Dependence of the stability of emulsion drops pressed against a large interface // Langmuir. 1999. V. 15. P. 6764.
  7. Koots J.A., Speight J.G. Relation of petroleum resins to asphaltenes // Fuel. 1975 V. 54. № 3. P. 179.
  8. Gafonova O., Yarranton H. The stabilization of water-in-hydrocarbon emulsions by asphaltenes and resins // J. Colloid Interface Sci. 2001 V. 241. № 2 P. 469.
  9. Lixin X., Shiwei L., Guoying C. Stability and demulsification of emulsions stabilized by asphaltenes or resins // J. Colloid Interface Sci. 2004. V. 271. № 2. P. 504.
  10. Czarnecki J. Stabilization of water in crude oil emulsions. Part 2 // Energy & Fuels. 2009. V. 23. № 3. P. 1253.
  11. Pickering S. Emulsions // Journal of the chemical society. Transactions. 1907. V. 91 P. 2001.
  12. Sztukowski D., Yarranton H. Oilfield solids and water-in-oil emulsion stability // J. Colloid Interface Sci. 2005. V. 285. № 2. P. 821.
  13. Jennings H.I. A study of caustic solution crude oil interfacial tensions // Soc. Petrol. Eng. J. 1975 V. 15. № 3. P. 197.
  14. Parker R.J., Chung E.S.N. Acid numbers of Saskatchewan heavy oils // J. Can. Pet. Technol. 1986. V. 25. № 4. P. 72.
  15. Acevedo S., Gastón E., Luis G., Hercilio R. Isolation and characterization of natural surfactants from extra heavy crude oils, asphaltenes and maltenes. Interpretation of their interfacial tension-pH behaviour in terms of ion pair formation // Fuel. 1992. V. 71. № 6. P. 619.
  16. Chan M., Yen T. A. Chemical equilibrium model for interfacial activity of crude oil in aqueous alkaline solution: the effects of pH, alkali and salt // Can. J. Chem. Eng. 1982 V. 60. № 2. P. 305.
  17. Moeini F., Hemmati-Sarapardeh A., Ghazanfari M.H., Masihi M., Ayatollahi S. Toward mechanistic understanding of heavy crude oil/brine interfacial tension: the roles of salinity, temperature and pressure // Fluid Phase Equilibr. 2014. V. 375. P. 191.
  18. Mohammed R., Bailey A., Luckham P., Taylor S. Dewatering of crude oil emulsions 1. Rheological behaviour of the crude oil-water interface // Colloids Surf., A: Physicochem. Eng. Asp. 1993. V. 80. № 2. P. 223.
  19. Tchoukov P., Yang F., Xu Z., Dabros T., Czarnecki J. Role of asphaltenes in stabilizing thin liquid emulsion films // Langmuir. 2014. V. 30 P. 3024.
  20. Tchoukov P., Czarnecki J., Dabros T. Study of water-in-oil thin liquid films: Implications for the stability of petroleum emulsions // Colloids Surf., A: Physicochem. Eng. Asp. 2010. V. 372. P. 15.
  21. Wu X. Investigating the stability mechanism of water-in-diluted bitumen emulsions through isolation and characterization of the stabilizing materials at the interface // Energy & Fuels. 2003 V. 17. P. 179.
  22. Czarnecki J., Tchoukov P., Dabros T., Xu Z. Role of asphaltenes in stabilisation of water in crude oil emulsions // Jan. Can. J. Chem. Eng. 2013. V. 91. P. 1365.
  23. Tourbin M., Frances C. Experimental characterization and population balance modelling of the dense silica suspensions aggregation process // Chem. Eng. Sci. 2008. V. 63. P. 5239.
  24. Kralova I., Sjöblom J., Øye G., Simon S., Grimes B.A., Paso K. Heavy crude oils/particle stabilized emulsions // Adv. Colloid Interface Sci. 2011. V. 169. P. 106.
  25. Cunha R.E.P., Fortuny M., Dariva C., Santos A.F. Mathematical modeling of the destabilization of crude oil emulsions using population balance equation, Ind. Eng. Chem. Res. 2008. V. 47. P. 7094.
  26. Grimes B.A. Population balance model for batch gravity separation of crude oil and water emulsions. Part I: Model Formulation // J. Dispers. Sci. Technol. 2012. V. 33 P. 578.
  27. Attarakih M.M., Bart H.J., Faqir N.M. Numerical solution of the spatially distributed population balance equation describing the hydrodynamics of interacting liquid-liquid dispersion // Chem. Eng. Sci. 2004. V. 59 P. 256.
  28. Misra A., de Souza L.G.M., Illner M., Hohl L., Kraume M., Repke J.-U., Thévenin D. Simulating separation of a multiphase liquid-liquid system in a horizontal settler by CFD // Chem. Eng. Sci. 2017. V. 167. P. 242.
  29. Oshinowo L. M., Vilagines R. D. Modeling of oil–water separation efficiency in three-phase separators: Effect of emulsion rheology and droplet size distribution // Chem. Eng. Res. Des. 2020. V. 159. P. 278.
  30. Kuma S., Ramkrishna D. On the solution of population balance equations by discretization I. A fixed pivot technique // Chem. Eng. Sci. 1996. V. 51. P. 1311.
  31. Rowe P.N. A convenient empirical equation for estimation of the Richarson-Zaki exponent // Chem. Eng. Sc. 1987. V. 42. № 11. P. 2795.
  32. Turton R., Levenspiel O. A short note on the drag correlation for spheres // Powder Technol.1986. V. 47. № 1. P. 83.
  33. Hartman M. Predicting the free-fall velocities of spheres // Chem. Eng. Sci. 1989. V. 44. № 8. P. 1743.
  34. Turton R., Clark N.N. An explicit relationship to predict spherical particle terminal velocity // Powder Technol. 1987. V. 53. P. 127.
  35. Handbook on Theory and Practice of Bitumen Recovery from Athabasca Oil Sands, Volume 1: Theoretical Basis/ Eds.Masliyah, J.H., Czarnecki, J., Xu, Z., Kingsley Knowledge Publishing, 2011.
  36. Liao Y., Lucas D. A Literature review on mechanisms and models for the coalescence process of fluid particles// Chem. Eng. Sci. 2010. V. 65. P. 2851.
  37. Kamp A.M., Chesters A.K. Bubble coalescence in turbulent flows: A mechanistic model for turbulence-induced coalescence applied to microgravity bubbly pipe flow // Int. J. Multiph. Flow. 2010. V. 27. P. 1363.
  38. Coulaloglou C.A. Dispersed phase interactions in an agitated flow vessel. Ph.D. Diss. Chicago, 1975.
  39. Yanru S., Sjöblom J. Interfacial shear rheology of asphaltenes at oil–water interface and its relation to emulsion stability: Influence of concentration, solvent aromaticity and nonionic surfactant // Colloids Surf., A: Physicochem. Eng. Asp. 2010. V. 366. № 1. P. 120.
  40. Dabros T., Yeung A., Masliyah J., Czarnecki J. Emulsification through area contraction // J. Colloid Interface Sci. 1999. V. 210. P. 222.
  41. McLean J., Kilpatrick P. Effects of asphaltene aggregation in model heptane toluene mixtures on stability of water-in-oil emulsions. // J. Colloid Interface Sci. 1997. V. 196. № 1. P. 23.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Scheme of the experimental setup.

Download (174KB)
3. Fig. 2. The influence of the number of spatial discretizations on the numerical value of the coefficient and the magnitude of the residual: (a) – numerical value of the coefficient; (b) – magnitude of the residual.

Download (199KB)
4. Fig. 3. Combination of experimental and calculated dependences of emulsion water content on time at ½ and ¾ of the container height at different temperatures for model No. 2: (a) 20ºC; (b) 50ºC; (c) 70ºC.

Download (514KB)

Copyright (c) 2025 Russian Academy of Sciences