Flow structure at floating of a single bubble in a liquid with solute surfactant

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The results of mathematical modeling of the nonstationary problem of gas bubble surfacing in a viscous liquid with a solute dissolved in it are presented. The problem formulation is written taking into account the adsorption and desorption effects of the surfactant at the interface and the dependence of the surface tension coefficient on concentration according to Langmuir’s law. The numerical algorithm of the solution is based on the original Lagrangian-Eulerian technique, which allows us to explicitly allocate the free surface at the discrete level and realize natural boundary conditions on it. The process of establishing the stationary velocity of bubble surfacing is studied, and parametric research on the influence of the surfactant concentration and bubble size on the stationary velocity and flow structure in its vicinity is performed. The distributions of the velocity vector and surface concentration along the interface are presented, demonstrating the influence of the Marangoni effect on the surfacing process.

Full Text

Restricted Access

About the authors

E. I. Borzenko

National Research Tomsk State University

Author for correspondence.
Email: borzenko@ftf.tsu.ru
Russian Federation, Tomsk

A. S. Usanina

National Research Tomsk State University

Email: borzenko@ftf.tsu.ru
Russian Federation, Tomsk

References

  1. Левич В.Г. Физико-химическая гидродинамика. М.: ГИФМЛ, 1959.
  2. Clift R., Grace J.R., Weber W.E. Bubbles, Drops, and Particles. New York: Academic Press, 1978.
  3. Farsoiya P.K., Popinet S., Stone H.A., Deike L. Coupled volume of fluid and phase field method for direct numerical simulation of insoluble surfactant-laden interfacial flows and application to rising bubbles // Phys. Rev. Fluids. 2024. № 9. Р. 094004.
  4. Fdhila R.B., Duineveld P.C. The effect of surfactant on the rise of a spherical bubble at high Reynolds and Peclet numbers // Phys. Fluids. 1996. V. 8. P. 310.
  5. Palaparthi R., Papageorgiou D.T., Maldarelli C. Theory and experiments on the stagnant cap regime in the motion of spherical surfactant-laden bubbles // J. Fluid. Mech. 2006. V. 559. P. 1.
  6. Kentheswaran K., Dietrich N., Tanguy S., Lalanne B. Direct numerical simulation of gas-liquid mass transfer around a spherical contaminated bubble in the stagnant-cap regime. 2022. V.198. Р. 123325.
  7. Takemura F. Adsorption of surfactants onto the surface of a spherical rising bubble and its effect on the terminal velocity of the bubble // Phys. Fluids. 2005. V. 17. 048104.
  8. Rubio A., Vega E.J., Cabezas M.G., Montanero J.M., Lopez-Herrera J.M., Herrada M.A. Bubble rising in the presence of a surfactant at very low concentrations // Phys. Fluids. 2024. V. 36. Р. 062112.
  9. Pang M., Jia M., Fei Y. Experimental study on effect of surfactant and solution property on bubble rising motion // J. Mol. Liq. 2023. V. 375. Р. 121390.
  10. Zhang B., Wang Z., Luo Y., Guo K., Zheng L. A mathematical model for single CO2 bubble motion with mass transfer and surfactant adsorption/desorption in stagnant solutions // Separation and Purification Technology. 2023. V. 308. Р. 122888.
  11. Sokovnin O.M., Zagoskina N.V., Zagoskin S.N. Hydrodynamics of motion of spherical particles, drops, and bubbles in non-newtonian liquid: experimental studies // Theor. Found. Chem. Eng. 2013. V. 47. № 4. Р. 356. [Соковнин О.М., Загоскина Н.В., Загоскин С.Н. Гидродинамика движения сферических частиц, капель и пузырей в неньютоновской жидкости. Экспериментальные исследования // Теорет. основы хим. технологии. 2013. Т. 47. № 4. С. 422.]
  12. Scriven L.E. Dynamics of a fluid interface Equation of motion for Newtonian surface fluids// Chem. Eng. Sci. 1960. V. 12 № 2. P. 98.
  13. Stone H.A. A simple derivation of the time-dependent convective-diffusion equation for surfactant transport along a deforming interface // Phys. Fluids A: Fluid Dynamics. 1992. V. 2. P. 111.
  14. Manikantan H., Squires T.M. Surfactant dynamics: hidden variables controlling fluid flows // J. Fluid Mech. 2020. V. 892. P. 1.
  15. Borzenko E.I., Usanina A.S., Shrager G.R. Experimental and theoretical investigation of the effect of dissolved surfactant on the dynamics of gas bubble floating-up // Fluid Dynamics. 2024. Vol. 59. № 4. Р. 741. [Борзенко Е.И., Усанина А.С., Шрагер Г.Р. Экспериментально-теоретическое исследование влияние растворенного поверхностно-активного вещества на динамику всплытия газового пузырька // Изв. РАН. МЖГ. 2024. № 4. С. 108.]
  16. Hayashi K., Motoki Y., van der Linden M.J.A., Deen N.G., Hosokawa S., Tomiyama A. Single Contaminated Drops Falling through Stagnant Liquid at Low Reynolds Numbers // Fluids. 2022. V. 7. № 55. P. 1.
  17. Cuenot B., Magnaudet J., Spennato B. The effects of slightly soluble surfactants on the flow around a spherical bubble // J. Fluid Mech. 1997. V. 339. P. 25.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Dependence of the free surface shape for La=0.01 (a): 1 – t = 0; 2 – t = 1; 3 – t = 2; 4 – t = 3; 5 – t = 4; 6 – t = 7; 7 – t = 15; 8 – t = 30; dependence of the ellipticity coefficient on time (b): 1 – La = 1, 2 – La = 0.01.

Download (351KB)
3. Fig. 2. Evolution of surface viscosity profiles: (a) La = 0.01; (b) La = 1: 1 – t = 0; 2 – t = 1; 3 – t = 2; 4 – t = 3; 5 – t = 4; 6 – t = 7; 7 – t = 15; 8 – t = 30.

Download (355KB)
4. Fig. 3. Distribution of Marangoni stresses at time t = 30: 1 – La = 0.01; 2 – La = 1.

Download (139KB)
5. Fig. 4. Evolution of the velocity component profiles: (a) La = 0.01; (b) La = 0.01; (c) La = 1: 1 – t = 0; 2 – t = 1; 3 – t = 2; 4 – t = 3; 5 – t = 4; 6 – t = 7; 7 – t = 15; 8 – t = 30.

Download (625KB)
6. Fig. 5. Distribution of components of radial (a), axial (b) velocities and modified pressure (c) at time t = 30.

Download (571KB)
7. Fig. 6. Distribution of volume concentration of surfactant (a) and instantaneous current lines (b) at time t = 30.

Download (533KB)
8. Fig. 7. Dependence of the ascent velocity on time (a) and steady-state shapes of the free surface (b): 1 – La = 0; 2 – La = 0.01; 3 – La = 0.02; 4 – La = 0.05; 5 – La = 0.1; 6 – La = 0.5.

Download (408KB)
9. Fig. 8. Distributions of the radial (a), axial (b) components of the velocity and surface concentration of surfactants (c) after establishing the ascent velocity: 1 – La = 0; 2 – La = 0.01; 3 – La = 0.02; 4 – La = 0.05; 5 – La = 0.1; 6 – La = 0.5; 7 – La = 1.

Download (455KB)
10. Fig. 9. Steady-state bubble ascent velocity depending on the La number (Ma = 0.2): 1 – Ga = 35, Bo = 0.025, Pe = PeΣ =35355, Ha = 0.035, K = 0.1; 2 – Ga = 100, Bo = 0.1, Pe = PeΣ = 105, Ha = 0.05, K = 0.05; 3 – Ga=184, Bo = 0.225, Pe = PeΣ = 183711, Ha = 0.061, K = 0.033; 4 – Ga=300, Bo = 0.441, Pe = PeΣ = 304318, Ha = 0.072, K = 0.024.

Download (130KB)
11. Fig. 10. Streamlines during the ascent of a single bubble: (a) Ga = 35; (b) Ga = 300.

Download (723KB)

Copyright (c) 2025 Russian Academy of Sciences