Dispersion characteristics of spin waves in a nanoscale magnon crystal

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The paper presents the results of a study of the features of spin wave propagation in a magnon crystal based on a nanoscale ferromagnetic film with a periodic system of grooves on the surface. Micromagnetic modeling was performed in the MuMax3 environment. It is established that additional hybrid modes on the dispersion characteristic for a magnon crystal near each main width mode are formed. The ratio of ridge to groove widths affects the energy distribution between hybrid modes and the cutoff frequency of the main modes. The influence of the ridge/groove ratio on the formation of band gaps based on dispersion and amplitude-frequency characteristics is analyzed. It is shown that the most pronounced band gaps are observed for large ridge/groove width ratios. Also, an increase in the ridge/groove ratio and an increase in the groove depth leads to an increase in the number of orders of pronounced Bragg resonances.

全文:

受限制的访问

作者简介

V. Balayeva

Saratov State University named after N.G. Chernyshevsky

Email: mamorozovama@yandex.ru
俄罗斯联邦, Astrakhanskaya Str., 83, Saratov, 410012

D. Romanenko

Saratov State University named after N.G. Chernyshevsky

Email: mamorozovama@yandex.ru
俄罗斯联邦, Astrakhanskaya Str., 83, Saratov, 410012

M. Morozova

Saratov State University named after N.G. Chernyshevsky

编辑信件的主要联系方式.
Email: mamorozovama@yandex.ru
俄罗斯联邦, Astrakhanskaya Str., 83, Saratov, 410012

参考

  1. Гуляев Ю.В., Никитов С.А. // ДАН. Сер. Физика. 2001. Т. 380. С. 469.
  2. Kruglyak V.V., Dvornik M., Mikhaylovskiy R.V. et al. Metamaterial. / Ed. by X.-Y. Jiang. L.: InTechOpen, 2012. P. 341.
  3. Chumak A.V., Serga A.A., Hillebrands B. // J. Phys.: Appl. Phys. 2017. V. 50. № 24. P. 244001.
  4. Frey P., Nikitin A.A., Bozhko D.A. et al. // Commun. Phys. 2020. V. 3. № 1. Article No. 17.
  5. Goto T., Shimada K., NakamuraY. et al. // Phys. Rev. Appl. 2019. V. 11. № 1. P. 014033.
  6. Chumak A.V., Kabos V.P., Wu M. et al. // IEEE Trans. 2022. V. MAG-58. № 6. Article No. 0800172.
  7. Barman A., Gubbiotti G., Ladak S. et al. // J. Phys.: Cond. Matt. 2021. V. 33. № 41. P. 413001.
  8. Wang Q., Kewenig M., Schneider M. et al. // Nature Electronics. 2020. V. 3. № 12. V. 765.
  9. Sadovnikov A.V., Beginin E.N., Morozova M.A. et al. // Appl. Phys. Lett. 2016. V. 109. № 4. P. 042407.
  10. Wang Zh.K., Zhang V.L., Lim H.S. et al. // ACS Nano. 2010. V. 4. № 2. P. 643.
  11. Böttcher T., Ruhwedel M., Levchenko K.O. et al. // Appl. Phys. Lett. 2022. V. 120. № 10. P. 102401.
  12. Wang Q., Verba R., Heinz B. et al. // arxiv.org/pdf/2207.01121.
  13. Sheshukova S.E., Beginin E.N., Sadovnikov A.V. et al. // IEEE Magnetics Lett. 2014. V. 5. Article No. 3700204.
  14. Дроздовский А.В., Черкасский М.А., Устинов А.Б. и др. // Письма в ЖЭТФ. 2010. Т. 91. № 1. С. 17.
  15. Ustinov A.B., Kalinikos B.A., Demidov V.E., Demokritov S.O. // Phys. Rev. B.2010. V. 81. № 18. P. 180406.
  16. Morozova M.A., Lobanov N.D., Matveev O.V. et al. // J. Magn. Magn. Mater. 2023. V. 584. P. 171051.
  17. Collet M., Gladii O., Evelt M. et al. // Appl. Phys. Lett. 2017. V. 110. № 9. P. 092408.
  18. Evelt M., Demidov V.E., Bessonov V. // Appl. Phys. Lett. 2016. Т. 108. № 17. P. 172406.
  19. Morozova M.A., Matveev O.V., Romanenko D.V. et al. // Phys. Rev. B. 2024. V. 110. № 10. P. 104408.
  20. Morozova M.A., Matveev O.V., Markeev A.M. et al. // Phys. Rev. B. 2023. V. 108. № 17. P. 174407.
  21. Wang Q., Rippo P., Verba R. et al. // Science Advances. 2018. V. 4. № 1. P. e1701517.
  22. Gruszecki P., Kasprzak M., Serebryannikov A.E. et al. // Scientific Reports. 2016. V. 6. Article No. 22367.
  23. Qin H., Hämäläinen S.J., Arjas K. et al. // Phys. Rev. B. 2018. V. 98. № 22. P. 224422.
  24. Goto T., Yoshimoto T., Iwamoto B. et al. // Scientific Reports. 2019. V. 9. Article No. 16472.
  25. Wang Q., Chumak A.V., Pirro P. // Nature Commun. 2021. V. 12. № 1. P. 2636.
  26. Wojewoda O., Holobrádek J., Pavelka D. et al. // Appl. Phys. Lett. 2024. V. 125. № 13. P. 132401.
  27. Sadovnikov A.V., Beginin E.N., Odincov S.A. et al. // Appl. Phys. Lett. 2016. V. 108. № 17. P. 172411.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Dispersion characteristics with the designation of the mode order n for different structure widths: (a) – ferromagnetic film without grooves, w = 1 μm; (b) – MC, w = 1 μm; (c) – MC, w = 1 μm (enlarged scale); (d) – MC, w = 3 μm; (d) – MC, w = 5 μm; (e) – MC, w = 10 μm. Other parameters: h = 20 nm, Δ = 12 μm, a/b = 6/6.

下载 (675KB)
3. Fig. 2. Dispersion characteristics with the designation of forbidden zones for different values of the ratio a/b: 1/5 (a); 2/4 (b); 3/3 (c); 4/2 (d); 5/1 (d). Other parameters: Δ = 6 μm, w = 1 μm, h = 20 nm.

下载 (589KB)
4. Fig. 3. Frequency response with the designation of forbidden zones for different values of the ratio a/b: 1/5 (a); 2/4 (b); 3/3 (c); 4/2 (d); 5/1 (d). Other parameters: Δ = 6 μm, w =1 μm, h = 20 nm.

下载 (263KB)
5. Fig. 4. Dispersion characteristics with the designation of forbidden zones for different values of the ratio a/b: 1/5 (a); 2/4 (b); 3/3 (c); 4/2 (d); 5/1 (d). Other parameters: Δ = 6 μm, w = 1 μm, h = 30 nm.

下载 (575KB)
6. Fig. 5. Frequency response with the designation of forbidden zones for different values of the ratio a/b: 1/5 (a); 2/4 (b); 3/3 (c); 4/2 (d); 5/1 (d). Other parameters: Δ = 6 μm, w = 1 μm, h = 30 nm.

下载 (267KB)

版权所有 © Russian Academy of Sciences, 2025