Analysis of radiative absorption of acoustic Lamb waves in plates loaded with an inviscid non-conducting fluid.

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The dependence of radiation losses into a liquid on the value of the displacement component U_3 normal to the plate on the surface of a piezoelectric plate was experimentally studied for Lamb waves of various orders. Waves whose phase velocity V_n in the plate are considered greater than the velocity of the longitudinal volumetric acoustic wave in the liquid V_l. It is shown that at small values of U3 there is no radiation into the liquid and the magnitude of radiation losses is close to zero even at V_n > V_l; at large values of U_3, the magnitude of radiation losses is large and for Lamb waves in the YZ-LiNbO3 plate with a thickness normalized to the wavelength of 1.75 and frequency  16.97 MHz it reaches a value of 4 dB/mm, comparable to the radiative losses of surface acoustic waves in the same material.

作者简介

N. Ageikin

Kotelnikov Institute of Radioengineering and Electronics, Russian Academy of Sciences

Email: ageykin_niki@mail.ru
Moscow, 125009 Russia

V. Anisimkin

Kotelnikov Institute of Radioengineering and Electronics, Russian Academy of Sciences

Email: ageykin_niki@mail.ru
Moscow, 125009 Russia

N. Voronova

Scientific-Research Institute of Molecular Electronics

Email: ageykin_niki@mail.ru
Moscow Zelenograd, 124460, Russia

A. Smirnov

Kotelnikov Institute of Radioengineering and Electronics, Russian Academy of Sciences

编辑信件的主要联系方式.
Email: ageykin_niki@mail.ru
Moscow, 125009 Russia

参考

  1. Фрайден Дж. Мир электроники. Современные датчики. Справочник. М.: Техносфера, 2006.
  2. Викторов И.А. Физические основы применения ультразвуковых волн Рэлея и Лэмба в технике. М.: Наука, 1966.
  3. Kuznetsova I.E., Zaitsev B.D., Borodina I.A. et al. // Ultrasonics. 2004. V. 42. № 1–9. P. 179. https://doi.org/10.1016/j.ultras.2004.01.006
  4. Smirnov A., Anisimkin V., Voronova N. et al. // Sensors. 2022. V. 22. № 19. P. 7231. https://doi.org/10.3390/s22197231
  5. Caliendo C. // Sensors. 2015. V. 15. № 6. P. 12841. https://doi.org/10.3390/s150612841
  6. Terakawa Y., Kondoh J. // Jpn. J. Appl. Phys. 2020. V. 59. SKKC08. https://doi.org/10.35848/1347-4065/ab84ae
  7. White R.M., Wicher P.J., Wenzel S.W., Zellers E.T. // IEEE Trans. 1987. V. UFFC-34. № 2. P. 162. https://doi.org/10.1109/T-UFFC.1987.26928
  8. Kuznetsova I.E., Zaitsev B.D., Joshi S.G., Teplykh A.A. // Acoust. Phys. 2007. V. 53. № 5. P. 557. https://doi.org/10.1134/S1063771007050041
  9. Anisimkin I.V., Anisimkin V.I. // IEEE Trans. 2006. V. UFFC-53. № 8. P. 1487. https://doi.org/10.1109/TUFFC.2006.1665106
  10. Hamidullah M., Elie-Caille C., Leblois T. // J. Phys. D: Appl. Phys. 2022. V. 55. № 9. P. 094003. https://doi.org/10.1088/1361-6463/ac39c5
  11. Mansoorzare H., Shahraini S., Todi A. et al. // IEEE Trans. 2020. V. UFFC-67. № 6. P. 1210–1218. https://doi.org/10.1109/TUFFC.2019.2955402
  12. Anisimkin V., Shamsutdinova E., Li P. et al. // Sensors. 2022. V. 22. № 7. P. 2727. https://doi.org/10.3390/s22072727
  13. Anisimkin V.I., Voronova N.V. // Ultrasonics. 2021. V. 116. Article No. 106496. https://doi.org/10.1016/j.ultras.2021.106496
  14. Anisimkin V., Kolesov V., Kuznetsova A. et al. // Sensors. 2021. V. 21. № 3. P. 919.
  15. Adler E.L., Slaboszewics J.K., Farnell G.W., Jen C.K. // IEEE Trans. 1990. V. UFFC-37. № 3. P. 215.
  16. Slobodnik A.J., Jr., Conway E.D., Delmonico R.T. // J. Acoust. Soc. Am. 1974. V. 56. № 4. P. 1307.

补充文件

附件文件
动作
1. JATS XML
2.

下载 (99KB)
3.

下载 (127KB)
4.

下载 (113KB)

版权所有 © Н.А. Агейкин, В.И. Анисимкин, Н.В. Воронова, А.В. Смирнов, 2023