Hardware Optimization of Finite Impulse Response Filters

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Acesso é pago ou somente para assinantes

Resumo

The paper discusses hardware implementation algorithms for widely used half-band filters (HBF), such as the Coefficient Quantization Algorithm (CQA), the Multiple Constant Multiplication (MCM) algorithm, and their combination, CQA+MCM. The use of the CQA algorithm reduces the number of multipliers in the HBF filter structure. The MCM algorithm converts multipliers into a set of adders and bit shifts. Combining both algorithms allows for replacing all multipliers with a set of adders and bit shifts. A resource analysis was carried out for hardware implementations of 30th- and 94th-order HBF filters. It was found that the CQA algorithm reduces the number of multipliers by 37 % and 74 %, respectively. The MCM algorithm completely eliminates multipliers from the filter design, but the number of adders increases by 3x and 2.6x, respectively. A comparison with existing methods showed that the time required to compute the coefficients of the optimized filter using the proposed algorithms is only a few seconds, whereas most other methods take significantly longer (up to a full day). It was shown that the difference in the required resources does not exceed 10 %.

Sobre autores

N. Bakholdin

Moscow Institute of Physics and Technology

Email: bakholdin.nv@phystech.edu
9 Institutsky Lane, Dolgoprudny, Moscow Region, 141701

S. Bakhurin

Moscow Institute of Physics and Technology

Email: bakhurin.sa@mipt.ru
9 Institutsky Lane, Dolgoprudny, Moscow Region, 141701

A. Busse

Email: bakholdin.nv@phystech.edu

A. Degtyarev

Email: bakholdin.nv@phystech.edu

M. Soloviev

Autor responsável pela correspondência
Email: bakholdin.nv@phystech.edu

Bibliografia

  1. Oппенгейм А., Шафер Р. Цифровая обработка сигналов. М.: Техносфера, 2012.
  2. Rabiner L., Schafer R. // IEEE Trans. 1971. V. AE-19. № 3. P. 200.
  3. San-José-Revuelta L.M., Arribas J.I. // Expert Systems with Applications. 2018. V. 106. P. 92.
  4. Selesnick I. Linear-Phase FIR Filter Design by Least Squares /EL 713. Lecture Notes. N.Y.: New York Univ., 2005. 39 p. https://eeweb.engineering.nyu.edu/iselesni/EL713/firls/firls.pdf
  5. Aggarwal A., Rawat T.K., Kumar M., Upa-dhyay D.K. Design of optimal band-stop FIR filter using L1 norm based RCGA // Ain Shams Engineering J. 2018. V. 9. № 2. P. 277.
  6. McClellan J., Parks T., Rabiner L. // IEEE Trans. 1973. V.AE-21. № 6. P. 506.
  7. Aksoy L., Flores P., Monteiro J. // IEEE Trans. 2014. V. SP-63. № 1. P. 142.
  8. Kumm M., Volkova A., Filip S.-I. // IEEE Trans. 2023. V. CAD-42. № 2. P. 658.
  9. Xu F., Chang C.H., Jong C.C. // IEEE Trans. 2007. V. CAD-26. № 10. P. 1898.
  10. Shi D., Yu Y.J. // IEEE Trans. 2011. V. CS-58. № 1. P. 126.
  11. Gustafsson O., Wanhammar L. // Proc. 2002 45 th Midwest Symp. Circuits and Systems (MSCAS). Tusla. 04–07 Aug. N.Y.: IEEE, 2002. V. 3. P. 9.
  12. Yu Y.J., Lim Y.C. // Circuits, Systems, Signal Processing. 2010. V. 29. № 1. P. 65.
  13. Yli-Kaakinen J., Saramaki T. // Proc. 2001 IEEE Int. Symp. Circuits and Systems (ISCAS). Sydney. 09 May. N.Y.: IEEE, 2001. P. 185.
  14. Shahein A., Zhang Q., Lotze N., Manoli Y. // IEEE Trans. 2012. V. CS(I) – 59. № 3. P. 616.
  15. Aktan M., Yurdakul A., Dündar G. // IEEE Trans. 2008. V. CS-55. № 6. P. 1536.
  16. Chen C.-L., Willson A.N., Jr. // IEEE Trans. 1999. V. СЫ(II)-46. № 1. P. 29.
  17. Aksoy L., Güneş E. O., Flores P. // Microprocessors and Microsystems. 2010. V. 34. № 5. P. 151.
  18. Degtyarev A., Saifullin K., Bakhurin S. // 2022 24th Int. Conf. on Digital Signal Processing and its Applications (DSPA). Moscow, 30 Mar. – 01 Apr. N.Y.: IEEE, 2022. Paper No. 9790772.
  19. Bakholdin N., Degtyarev A., Bakhurin S. // 2023 5th Int. Youth Conf. on Radio Electronics, Electrical and Power Engineering (REEPE). Moscow. 16–18 Mar. N.Y.: IEEE, 2023. Paper No. 10086717.
  20. Cолонина А.И. Цифровая обработка сигналов. Моделирование в Simulink. СПб.: БХВ-Петербург, 2012.
  21. Thong J., Nicolici N. // IEEE Trans. 2011. V. CAD-30. № . 9. P. 1373.
  22. Boudjelaba K., Ros F., Chikouche D. // IET Signal Processing. 2014. V. 8. P. 429.
  23. Aksoy L., Flores P., Monteiro J. // 2014 IEEE Int. Symp. on Circuits and Systems (ISCAS). Melbourne, 01–05 Jun. N.Y.: IEEE, 2014. P. 1456.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2025