Bias-controlled dipole spin-wave coupling in lateral magnetic microstructures

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Acesso é pago ou somente para assinantes

Resumo

The interaction of spin waves propagating as directional modes in microwaves based on iron-yttrium garnet films has been examined. The configuration consists of three microwaves arranged in parallel, with air gaps separating them, allowing for the coupling between them. The source of this coupling is attributed to the long-range dynamic sagging (dipole) field of the precessing magnetization vector. A methodology is put forward to regulate the properties of this coupling by modulating the angle of the static magnetization with respect to the principal axes of the geometry. Micromagnetic modeling was employed to demonstrate the sub-magnetization angle-controlled propagation of spin waves along lateral microwaves. As a consequence of micromagnetic modeling, spin wave propagation spectra were obtained. The subsequent analysis of these spectra revealed that lateral microwaves can function as functional elements in planar magnonic networks, serving as directional taps, spin wave multiplexers, or microwave power dividers. Furthermore, the study demonstrated the capability to control spin wave routing between the microwaves («magnetic channels») through the modulation of the external magnetic field angle.

Sobre autores

A. Grachev

Saratov National Research State University named after N.G. Chernyshevsky

Email: andrew.a.grachev@gmail.com
Astrakhanskaya Str., 83, Saratov, 410012 Russian Federation

A. Sadovnikov

Saratov National Research State University named after N.G. Chernyshevsky

Autor responsável pela correspondência
Email: andrew.a.grachev@gmail.com
Astrakhanskaya Str., 83, Saratov, 410012 Russian Federation

Bibliografia

  1. Wang Q., Pirro P., Verba R. et al. // Science Advances. 2018. V. 4. № 1. Article No. 1701517.
  2. Ustinov A.B., Lähderanta E., Inoue M. et al. // IEEE Magn. Lett. 2019. V. 10. Article No. 5508294.
  3. Barman A., Gubbiotti G., Ladak S. et al. // J. Phys.: Cond. Matt. 2021. V. 33. № 41. P. 413001.
  4. Sadovnikov A.V., Beginin E.N., Sheshukova S.E. et al. // Phys. Rev. B. 2019. V. 99. № 5. P. 054424.
  5. Sadovnikov A.V., Grachev A.A., Serdobintsev A.A. et al. // IEEE Magn. Lett. 2019. V. 10. Atricle No. 5506405.
  6. Kalyabin D.V., Sadovnikov A.V., Beginin E.N., Nikitov S.A. // J. Appl. Phys. 2019. V. 126. № . 17. P. 173907.
  7. Никитов С.А., Сафин А.Р., Калябин Д.В. и др. // Успехи физ. наук. 2020. Т. 190 № 10. С. 1009.
  8. Tacchi S., Gruszecki P., Madami M. et al. // Scientific Reports. 2015. V. 5. № 1. Article No. 10367.
  9. Flebus B., Grundler D., Rana B. et al. // J. Phys.: Cond. Matt. 2024. V. 36. № 36. P. 363501.
  10. Evelt M., Demidov V.E., Bessonov V. et al. // Appl. Phys. Lett. 2016. V. 108. № 17. P. 172406.
  11. Vogel M., Chumak A.V., Waller E.H. et al. // Nature Physics. 2015. V. 11. № 6. P. 487.
  12. Садовников А.В., Грачев А.А., Одинцов С.А. и др. // Письма в ЖЭТФ. 2018. Т. 108. № 5. С. 332.
  13. Demokritov S.O. Topology in Magnetism/Eds.by J. Zang, V. Cros, A. Hoffmann. Cham: Springer, 2018. P. 299.
  14. Khivintsev Y.V., Sakharov V.K., Kozhevnikov A.V. et al. // J. Magn. Magn. Mater. 2022. V. 545. Article No.168754.
  15. Borys P., Kolokoltsev O., Iván Gómez-Arista I. et al. // J. Magn. Magn. Material. 2020. V. 498. Article No. 166154.
  16. Vogel M., Abmann R., Pirro P. et al. // Scientific Reports. 2018. V. 8. № 1. Article No. 11099.
  17. Whitehead N.J., Horsley S.A.R., Philbin T.G., Kruglyak V.V. // Appl. Phys. Lett.2018. V. 113. № 21. P. 212404.
  18. Dzyapko O., Borisenko I.V., Demidov V.E. et al. // Appl. Phys. Lett. 2016. V. 109. № 23. P. 232407.
  19. O’Keeffe T.W., Patterson R.W. // J. Appl. Phys. 1978. V. 49. № 9. P. 4886.
  20. Kostylev M.P., Serga A.A., Schneider T. et al. // Phys.l Revi. B. 2007. V. 76. № 18. P. 184419.
  21. Stancil D.D., Prabhakar A. Spin Waves. Berlin: Springer, 2009.
  22. Damon R.W., Eshbach J.R. // J. Phys. Chem. Solids. 1961. V. 19. № 3–4. P. 308.
  23. Sadovnikov A.V., Beginin E.N., Sheshukova S.E. et al. // Appl. Phys. Lett. 2015. V. 107. № 20. P. 202405.
  24. Vansteenkiste A., Leliaert J., Dvornik M. et al. // AIP Advances. 2014. V. 4. № 10. P. 107133.
  25. Гуревич А.Г., Мелков Г.А. Магнитные колебания и волны. М.: Физматгиз, 1994.
  26. Kostylev M.P., Stashkevich A.A., Sergeeva N.A. // Phys. Rev. B. 2004. V. 69. № 6. P. 064408.
  27. Buttner O., Bauer M., Mathieu C. et al. // IEEE Trans. 1998. V.MAG-34. № 4. P. 1381.
  28. Aharoni A. // J. Appl. Phys. 1998. V. 83. № 6. P. 3432
  29. Schabes M., Aharoni A. // IEEE Trans.1987. V. MAG-23. № 6. P. 3882.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2025