Interlayer junction for EBG waveguide integrated with a power divider into two channels

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

An interlayer junction for three-row EBG waveguides integrated with a two-channel power divider was studied. It is shown that without additional matching such transitions are relatively narrow-band in terms of reflection coefficient in the frequency band 8…12 GHz. To expand the matching band, a modified transition with additional matching rods in both waveguide channels on the power divider layer is proposed. Using numerical analysis, it was found that due to this in the frequency band under study, it is possible to obtain a symmetrical matching curve with two well separated minima and with a matching level no worse than –20 dB in the central part of the range. It is shown that in the structure with matching rods, the operating frequency band by reflection coefficient is significantly expanded in comparison with the original structure.

Texto integral

Acesso é fechado

Sobre autores

S. Bankov

Institute of Radio Engineering and Electronics named after V.A. Kotelnikov RAS

Autor responsável pela correspondência
Email: sbankov@yandex.ru
Rússia, St. Mokhovaya, 11, building 7, Moscow, 125009

V. Kalinichev

Institute of Radio Engineering and Electronics named after V.A. Kotelnikov RAS

Email: sbankov@yandex.ru
Rússia, St. Mokhovaya, 11, building 7, Moscow, 125009

Bibliografia

  1. Гвоздев В.И., Нефедов Е.И. Объемные интегральные схемы СВЧ. М.: Наука, 1987.
  2. Банков С.Е. Электромагнитные кристаллы. М.: Физматлит, 2010.
  3. Bankov S.E. // PIERS Proc. Moscow (Russia), August 18–21. 2009. P. 1680.
  4. Банков С.Е., Дупленкова М.Д. // Журн. радиоэлектроники. 2009. № 4. http://jre.cplire.ru/jre/apr09/4/text.html
  5. Банков С.Е., Калошин В.А., Фролова Е.В. // Журн. радиоэлектроники. 2009. № 3. http://jre.cplire.ru/jre/mar09/1/text.html
  6. Банков С.Е., Пангонис Л.И., Фролова Е.В. // РЭ. 2010. Т. 55. № 11. С. 1285.
  7. Банков С.Е., Калиничев В.И., Фролова Е.В. // РЭ. 2020. Т. 65. № 9. С. 1.
  8. Ommodt K., Sanzgiri S., German F., Jones T. // Dig. IEEE Antennas and Propagation Soc. Int. Symp. . Baltimore. 21–26 Jul. 1996. N.Y.: IEEE, 1996. V. 2. P. 1334. https://ieeexplore.ieee.org/document/549843
  9. Abdel-Wahab W.M., Al-Saedi H., Palizban A. // Proc. IEEE Int. Symp. on Antennas and Propagation and USNC-URSI Radio Sci. Meeting. Atlanta. 7–12 Jul. 2019. N.Y.: IEEE, 2019. P. 961. https://ieeexplore.ieee.org/document/8889060
  10. Yang T.-H., Chen C.-F., Huang T.-Y. // Proc. Asia-Pacific Microwave Conf. Suzhou, 4–7 Dec. 2005. N.Y.: IEEE, 2005. Article No. 1606978 https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1606978
  11. Vahabisani N., Daneshmand M. // Proc. 42nd Europ. Microwave Conf. Amsterdam. 29 Oct. — 1 Nov. 2012. N.Y.: IEEE, 2012. Article No. 6459138. https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6459138
  12. Myers J.C., Hejase J.A., Tang J. et al. // IEEE27th Conf. Electrical Performance of Electronic Packaging and Systems (EPEPS). San Jose. 14–17 Oct. 2018. N.Y.: IEEE, 2018. P. 123. https://ieeexplore.ieee.org/document/8534285
  13. Huang Y., Wu K.-L., Ehlert M. // IEEE Microwave Opt. Technol. Lett. 2003. V. 13. № 8. P. 338.
  14. Калиничев В.И., Банков С.Е. // РЭ. 2022. Т. 67. № 7. С. 628.
  15. Сазонов Д.М. Антенны и устройства СВЧ. М.: Высш. школа, 1988.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Schematic representations from above (a) and from the side (b) of an interlayer transition with power division into two channels on the upper layer with the designation of the main parameters; 1–3 are the port numbers.

Baixar (21KB)
3. Fig. 2. HFSS model for numerical study of interlayer transition with power division into two channels on the upper layer: three-dimensional view (a) and side view

Baixar (17KB)
4. Fig. 3. Frequency dependence of the reflection coefficient for N = 0.65 (1), 0.7 (2), 0.75 (3), 0.8 (4), 0.85 (5) and L1 = 6.5, L2 = 8.0.

Baixar (14KB)
5. Fig. 4. Frequency dependence of the reflection coefficient for L1 = 6.0 (1), 6.5 (2), 7.0 (3), 7.5 (4) and L2 = 8, N = 0.7.

Baixar (14KB)
6. Fig. 5. Frequency dependence of the reflection coefficient for different values ​​of L2 = 6.5 (1), 7.5 (2), 8.0 (3), 9.0 (4), 1.0 (5) and L1 = 6.5, N = 0.7.

Baixar (16KB)
7. Fig. 6. Transition matching characteristics corresponding to the best combination of parameters for two cases: D2 = 2, D3 = 4, L1 = 6.5, L2 = 8, N = 0.7 (curve 1), D2 = 1, D3 = 2, L1 = 7, L2 = 8, N = 0.7 (curve 2), and P = 6, D1 = 2, h = 10, t = 1.

Baixar (12KB)
8. Fig. 7. Model of the transition structure with additional matching rods on the top layer: (a) — general view; (b) — top view; (c) — side view; 1–3 — port numbers.

Baixar (35KB)
9. Fig. 8. Frequency dependence of the reflection coefficient for Mx = 3.0 (1), 3.1 (2), 3.2 (3) and My = 1.6, N = 0.7, P = 6, D1 = 2, L1 = 6.5, L2 = 8.

Baixar (18KB)
10. Fig. 9. Matching characteristic for Mx = 3.075 and My = 1.6, N = 0.7, P = 6, D1 = 2, L1 = 6.5, L2 = 8.

Baixar (12KB)
11. Fig. 10. Frequency dependence of the reflection coefficient for N = 0.65 (1), 0.7 (2), 0.75 (3) and P = 6, D1 = 2, L1 = 6.5, L2 = 8, Mx = 3.075, My = 1.6.

Baixar (15KB)
12. Fig. 11. Frequency dependence of the reflection coefficient for values ​​L1 = 6.0 (1), 6.5 (2), 7.0 (3) and L2 = 8.0, P = 6, D1 = 2, Mx = 3.075, My = 1.6.

Baixar (15KB)
13. Fig. 12. Frequency dependence of the reflection coefficient for values ​​L2 = 7.5 (1), 8.0 (2), 8.5 (3) and L1 = 6.5, P = 6, D1 = 2, Mx = 3.075, My = 1.6.

Baixar (15KB)
14. Fig. 13. Frequency dependence of the reflection coefficient for My = 1.55 and Mx = 3.0 (1), 3.1 (2), 3.2 (3), as well as N = 0.7, L1 = 6.5, L2 = 8, P = 6, D1 = 2.

Baixar (17KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024