Production of 105Rh Using Electron Accelerators and a New Method for Its Separation from Irradiated Targets

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

105Rh is one of the promising beta-emitters for therapeutic purposes for nuclear medicine, but its use is limited, among other things, by its low availability, which necessitates the search for new effective ways to obtain it. In this work, the radionuclide composition of a PdCl2 target irradiated by bremsstrahlung photons is determined and a method is proposed for recovery 105Rh from it without a carrier using a commercial DGA sorbent, which ensures a high degree of purification of the target isotope. The studies carried out in the future may contribute to the practical use of 105Rh for nuclear medicine.

全文:

受限制的访问

作者简介

A. Kazakov

Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences

编辑信件的主要联系方式.
Email: adeptak92@mail.ru
俄罗斯联邦, ul. Kosygina 19, Moscow, 119991

Y. Babenya

Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences

Email: adeptak92@mail.ru
俄罗斯联邦, ul. Kosygina 19, Moscow, 119991

T. Ekatova

Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences

Email: adeptak92@mail.ru
俄罗斯联邦, ul. Kosygina 19, Moscow, 119991

E. Khvorostinin

Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences

Email: adeptak92@mail.ru
俄罗斯联邦, ul. Kosygina 19, Moscow, 119991

S. Belyshev

Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences; Moscow State University

Email: adeptak92@mail.ru

Physical Department, Skobeltsyn Institute of Nuclear Physics

俄罗斯联邦, ul. Kosygina 19, Moscow, 119991; Leninskie gory 1, str. 2, Moscow, 119991

A. Kuznetsov

Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences; Moscow State University

Email: adeptak92@mail.ru

Physical Department, Skobeltsyn Institute of Nuclear Physics

俄罗斯联邦, ul. Kosygina 19, Moscow, 119991; Leninskie gory 1, str. 2, Moscow, 119991

V. Khankin

Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences; Moscow State University

Email: adeptak92@mail.ru

Skobeltsyn Institute of Nuclear Physics

俄罗斯联邦, ul. Kosygina 19, Moscow, 119991; Leninskie gory 1, str. 2, Moscow, 119991

S. Vinokurov

Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences

Email: adeptak92@mail.ru
俄罗斯联邦, ul. Kosygina 19, Moscow, 119991

B. Myasoedov

Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences; Interdepartmental Center for Analytical Research in Physics, Chemistry and Biology, Russian Academy of Sciences

Email: adeptak92@mail.ru
俄罗斯联邦, ul. Kosygina 19, Moscow, 119991; ul. Profsoyuznaya 64, str. 6, Moscow, 117997

参考

  1. Boros E., Packard A.B. // Chem. Rev. 2019. Vol. 119. N2. P. 870–901.
  2. Grazman B. // Int. J. Radiat. Appl. Instr. A. 1988. Vol. 39. N3. P. 257–260.
  3. John C.S., Pillai M.R.A., Lo J.M., Troutner D.E. // Int. J. Radiat. Appl. Instr. A. 1989. Vol. 40. N8. P. 701–705.
  4. Lo J.M., Pillai M.R.A., John C.S., Troutner D.E. // Int. J. Radiat. Appl. Instr. A. 1990. Vol. 41. N1. P. 63–67.
  5. Pillai M.R. A., Lo J.M., John C.S., Troutner D.E. // Int. J. Rad. Appl. Instr. A. 1990. Vol. 17. N4. P. 419–426.
  6. Li N., Eberlein C.M., Volkert W.A., Ochrymowycz L., Barnes C., Ketring A.R. // Radiochim. Acta. 1996. Vol. 75. N2. P. 83–95.
  7. Venkatesh M., Goswami N., Volkert W.A., Schlemper E.O., Ketring A.R., Barnes C.L., Jurisson S. // Nucl. Med. Biol. 1996. Vol. 23. N1. P. 33–40.
  8. Jurisson S.S., Ketring A.R., Volkert W.A. // Transit. Met. Chem. 1997. Vol. 22. N3. P. 315–317.
  9. Li N., Struttman M., Higginbotham C., Grall A.J., Skerlj J.F., Vollano J.F., Bridger S.A., Ochrymowycz L.A., Ketring A.R., Abrams M.J., Volkert W.A. // Nucl. Med. Biol. 1997. Vol. 24. N1. P. 85–92.
  10. Venkatesh M., Schlemper E.O., Jurisson S., Ketring A.R., Volkert W.A., Corlija M. // Radiochim. Acta. 1999. Vol. 85. N3–4. P. 157–164.
  11. Brooks R.C., Carnochan P., Vollano J.F., Powell N.A., Zweit J., Sosabowski J.K., Martellucci S., Darkes M.C., Fricker S.P., Murrer B.A. // Nucl. Med. Biol. 1999. Vol. 26. N4. P. 421–430.
  12. Goswami N., Higginbotham C., Volkert W., Alberto R., Nef W., Jurisson S. // Nucl. Med. Biol. 1999. Vol. 26. N8. P. 951–957.
  13. Ando A., Ando I., Tonami N., Kinuya S., Okamoto N., Sugimoto M., Fukuda N., Matsumoto S. // Appl. Radiat. Isot. 2000. Vol. 52. N2. P. 211–215.
  14. Khandaker M.U., Kim K., Kim G., Otuka N. // Nucl. Instrum. Meth. Phys. Res. B: Beam Interact. Mater. At. 2010. Vol. 268. N14. P. 2303–2311.
  15. Khandaker M.U., Kim K., Lee M., Cho Y.S., Lee Y.O., Kim G. // Trans. Korean Nucl. Soc. Spring Meet. Gyeongju, Korea, May 29–30, 2008. P. 147–148.
  16. Khandaker M.U., Kim K., Kim G. // Pramana – J. Phys. 2012. Vol. 79. N2. P. 243–248.
  17. Najumunnisa T., Musthafa M.M., Midhun C.V., Aslam M., Rajesh K.K., Surendran P., Nair J.P., Shanbhag A., Ghugre S. // Nucl. Phys. A. 2023. Vol. 1032. Article 122611.
  18. Inagaki M., Sekimoto S., Tanaka W., Tadokoro T., Ueno Y., Kani Y., Ohtsuki T. // J. Radioanal. Nucl. Chem. 2019. Vol. 322. N3. P. 1703–1709.
  19. Unni P.R., Pillai M.R.A. // Radiochim. Acta. 2002. Vol. 90. N6. P. 363–369.
  20. Okoye N.C., Phelps T.E., Charles A., McCormick J.B., Wycoff D.E., Lydon J.D., Embree M.F., Guthrie J., Kelley S.P., Barnes C.L., Ketring A.R., Hennkens H.M., Jurisson S.S. // Appl. Radiat. Isot. 2021. Vol. 176. Article 109847.
  21. Krajewski S., Bilewicz A. // J. Radioanal. Nucl. Chem. 2010. Vol. 285. N2. P. 293–300.
  22. Feng Y., Phelps T.E., Carroll V., Galazzi F., Sieckman G., Hoffman T.J., Barnes C.L., Ketring A.R., Hennkens H.M., Jurisson S.S. // Dalton Trans. 2017. Vol. 46. N42. P. 14677–14690.
  23. Jia B.W., Ma D., Volkert E.W., Ketring A.R., Ehrhardt G.J., Jurisson S.S.// Platin. Met. Rev. 2000. N2. P. 50–55.
  24. Herman M., Marcinkowski A., Bielewicz J., Oblozinsky P. // Nucl. Phys. A. 1978. Vol. 297. P. 335–346.
  25. Tarkanyi F., Ditroi F., Takacs S., Hermanne A., Ignatyuk A.V., Spahn I., Spellerberg S. // Appl. Radiat. Isot. 2021. Vol. 168. Article 109401.
  26. Khandaker M.U., Kim K., Lee M., Kim K. // Nucl. Instrum. Meth. Phys. Res. B: Beam Interact. Mater. At. 2008. Vol. 266. N22. P. 4877–4887.
  27. Panikkath P. // Appl. Radiat. Isot. 2019. Vol. 153. Article 108819.
  28. Kazakov A.G., Ekatova T.Y., Babenya J.S. // J. Radioanal. Nucl. Chem. 2021. Vol. 328. N2. P. 493–505.
  29. Ermakov A.N., Ishkhanov B.S., Kamanin A.N., Pakhomov N.I., Khankin V.V., Shvedunov V.I., Shvedunov V.I., Zhuravlev E.E., Karev A.I., Sobenin N.P. // Instrum. Exp. Tech. 2018. Vol. 61. N2. P. 173–191.
  30. Belyshev S.S., Stopani K.A. // Moscow Univ. Phys. Bull. 2013. Vol. 68. N1. P. 88–91.
  31. Nguyen T.H., Sonu C.H., Lee M.S. // Hydrometallurgy. 2016. Vol. 164. P. 71–77.
  32. Zhang C., Huang K., Yu P., Liu H. // Sep. Purif. Technol. 2013. Vol. 108. P. 166–173.
  33. Gupta B., Singh I. // Hydrometallurgy. 2013. Vol. 134–135. P. 11–18.
  34. Gupta B., Singh I., Mahandra H. // Sep. Purif. Technol. 2014. Vol. 132. P. 102–109.
  35. Gaita R., Al-Bazi S.J. // Talanta. 1995. Vol. 42. N2. P. 249–255.
  36. Rovira M., Cortina J.L., Amaldos J., Sastre A.M. // Solvent Extr. Ion Exch. 1998. Vol. 16. N5. P. 1279–1302.
  37. Okoye N.C., Phelps T.E., Charles A., McCormick J.B., Wycoff D.E., Lydon J.D., Embree M.F., Guthrie J., Kelley S.P., Barnes C.L., Ketring A.R., Hennkens H.M., Jurisson S.S. // Appl. Radiat. Isot. 2021. Vol. 176. Article 109847.
  38. Pourmand A., Dauphas N. // Talanta. 2010. Vol. 81. N3. P. 741–753.
  39. Zhang Z.L., Zhou G.Q., Lin J.F., Ma Y., Yi X.W. // J. Radioanal. Nucl. Chem. 2017. Vol. 314. N1. P. 161–166.
  40. Yokoyama T., Makishima A., Nakamura E. // Anal. Chem. 1999. Vol. 71. N1. P. 135–141.
  41. Makishima A., Nakanishi M., Nakamura E. // Anal. Chem. 2001. Vol. 73. N21. P. 5240–5246.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Known approaches to obtaining 105Rh without a carrier on a fragment of a nuclide map. The black cells have stable nuclei and their content in a natural mixture, while the gray cells have radioactive nuclei and their T1/2; metastable nuclei are not noted.

下载 (164KB)
3. Fig. 2. Total counting rate of gamma lines of irradiated PdCl2 as a function of time after irradiation

下载 (52KB)
4. 3. Kd of palladium on DGA (a) and palladium and rhodium on TEVA (b) depending on the concentration of HCl solutions.

下载 (87KB)
5. 4. Palladium and rhodium elution curves for DGA (a), TEVA (b).

下载 (198KB)
6. 5. Gamma spectra of irradiated PdCl2 (a) and rhodium fractions after extraction on DGA (b).

下载 (187KB)

版权所有 © Russian Academy of Sciences, 2024