Определение степени окисления 99Тс, сорбированного на поверхности геологических образцов пирротина/пирита и стибнита, методом РФЭС
- Авторы: Маслаков К.И.1,2, Тетерин А.Ю.2, Сафонов А.В.3, Макаров А.В.3, Артемьев Г.Д.3, Тетерин Ю.А.1,2, Дворяк С.В.1
-
Учреждения:
- Московский государственный университет им. М.В. Ломоносова
- НИЦ «Курчатовский институт»
- Институт физической химии и электрохимии им. А.Н. Фрумкина РАН
- Выпуск: Том 66, № 2 (2024)
- Страницы: 125-135
- Раздел: Статьи
- URL: https://kazanmedjournal.ru/0033-8311/article/view/661156
- DOI: https://doi.org/10.31857/S0033831124020039
- ID: 661156
Цитировать
Аннотация
Проведена оценка иммобилизации пертехнетата пирротином/пиритом FenSn+1 (I) и стибнитом Sb2S3 (II) из дистиллированной воды в аэробных условиях. Коэффициенты распределения составляли 185 и 223 см3/г соответственно. Методом РФЭС изучено химическое состояние 99Tc на геологических образцах и установлено, что на поверхности стибнита присутствует Tc(IV), а на поверхности пирротина/пирита, кроме Tc(IV), обнаружена примесь (13%) Tc(VII). При этом достоверных свидетельств, подтверждающих наличие сульфидных технециевых фаз, не обнаружено. Таким образом, основной причиной иммобилизации пертехнетата на пирротине и стибните является его восстановление сурьмой и железом, а не образование сульфидов технеция, как предполагалось ранее.
Ключевые слова
Полный текст

Об авторах
К. И. Маслаков
Московский государственный университет им. М.В. Ломоносова; НИЦ «Курчатовский институт»
Email: antonxray@yandex.ru
Radiochemistry Division, Chemistry Department
Россия, Москва; 123182, Москва, пл. Академика Курчатова, д. 1А. Ю. Тетерин
НИЦ «Курчатовский институт»
Автор, ответственный за переписку.
Email: antonxray@yandex.ru
Россия, 123182, Москва, пл. Академика Курчатова, д. 1
А. В. Сафонов
Институт физической химии и электрохимии им. А.Н. Фрумкина РАН
Email: antonxray@yandex.ru
Россия, Москва
А. В. Макаров
Институт физической химии и электрохимии им. А.Н. Фрумкина РАН
Email: antonxray@yandex.ru
Россия, Москва
Г. Д. Артемьев
Институт физической химии и электрохимии им. А.Н. Фрумкина РАН
Email: antonxray@yandex.ru
Россия, Москва
Ю. А. Тетерин
Московский государственный университет им. М.В. Ломоносова; НИЦ «Курчатовский институт»
Email: antonxray@yandex.ru
Radiochemistry Division, Chemistry Department
Россия, Москва; 123182, Москва, пл. Академика Курчатова, д. 1С. В. Дворяк
Московский государственный университет им. М.В. Ломоносова
Email: antonxray@yandex.ru
Radiochemistry Division, Chemistry Department
Россия, МоскваСписок литературы
- Chatterjee S., Hall G.B., Jonson I.E., Du Y., Walter E.D., Washton N.M., Levitskaia T.G. // Inorg. Chem. Front. 2018. Vol. 5. P. 2081. https://doi.org/10.1039/C8QI00219C
- Meena A.H., Arai Y. // Environ. Chem. Lett. 2017. Vol. 15. N 2. P. 241–263. https://doi.org/10.1007/s10311-017-0605-7
- Garcia-Leon M. // J. Nucl. Radiochem. Sci. 2005. Vol. 6. N3. P. 253–259. https://doi.org/10.14494/jnrs2000.6.3_253
- Попова Н.Н., Тананаев И.Г., Ровный С.И., Мясоедов Б.Ф. // Успехи химии. 2003. Т. 72, № 2. С. 115–137. https://doi.org/10.1070/RC2003v072n02ABEH000785
- Makarov A.V., Safonov A.V., Konevnik Yu.V., Teterin Yu.A., Maslakov K.I., Teterin A. Yu. et al. // J. Hazard. Mater. 2021. Vol. 401. Article 123436 https://doi.org/10.1016/j.jhazmat.2020.123436
- Pegg I.L. // J. Radioanal. Nucl. Chem. 2015. Vol. 305. P. 287–292. https://doi.org/10.1007/s10967-014-3900-9
- Westsik J.H., Cantrell K.J., Serne R.J., Qafoku N.P. Technetium Immobilization Forms Literature Survey, PNNL-23329, EMSP-RPT-023 Pacific Northwest National Laboratory, Richland, WA, 2014. https://doi.org/10.2172/1130666
- Kamorny D.A., Safonov A.V., Boldyrev K.A., Abramova E.S., Tyupina E.A., Gorbunova O.A. // J. Nucl. Mater. 2021. Vol. 557. N 7. Article 153295. https://doi.org/10.1016/j.jnucmat.2021.153295
- Laverov N.P., Yudintsev S.V., Konovalov E.E., Mishevets T.O., Nikonov B.S., Omel’yanenko B.I. // Dokl. Chem. 2010. Vol. 431. P. 71–75. https://doi.org/10.1134/S0012500810030031
- Makarov A., Safonov A., Sitanskaia A., Martynov K., Zakharova E., Kulyukhin S. // Prog. Nucl. Energy. 2022. Vol. 152. Article 104398. https://doi.org/10.1016/j.pnucene.2022.104398
- Safonov A., Novikov A., Volkov M., Sitanskaia A., German K. // J. Radioanal. Nucl. Chem. 2023. Vol. 332. P. 2195–2204. https://doi.org/10.1007/s10967-023-08830-7
- Cantrell K.J., Williams B.D. // J. Nucl. Mater. 2013. V. 437, N 1–3. P. 424–431. https://doi.org/10.1016/j.jnucmat.2013.02.049
- May T., Matlack K.S., Muller I.S., Pegg I.L., Joseph I. Improved Technetium Retention in Hanford LAW Glass–Phase 1 Final Report. RPP-RPT-45887, Rev 0. Richland, WA: Washington River Protection Solutions, LLC.
- Um W., Chang H.S., Icenhower J.P., Lukens W.W., Serne R.J., Qafoku N. et al. // Environ. Sci. Technol. 2011. Vol. 45. N 11. P. 4904–4913. https://doi.org/10.1021/es104343p.
- Um W., Chang H.S., Icenhower J.P., Lukens W.W., Serne R.J., Qafoku N. et al. // J. Nucl. Mater. 2012. Vol. 429. N 1–3. P. 201–209. https://doi.org/10.1016/j.jnucmat.2012.06.004
- Singh B.K., Mahzan N.S., Abdul Rashid N.S., Isa S.A., Hafeez M.A., Saslow S., Um W. // Environ. Sci. Technol. 2023. Vol. 57. N 17. P. 6776–6798. https://doi.org/10.1021/acs.est.3c00129
- Arai Y., Powell B.A., Kaplan D.I. // J. Hazard. Mater. 2018. Vol. 342. P. 510–518. https://doi.org/10.1016/j.jhazmat.2017.08.049
- Luksic S.A., Riley B.J., Schweiger M., Hrma P. // J. Nucl. Mater. 2015. Vol. 466. P. 526–538. https://doi.org/10.1016/j.jnucmat.2015.08.052
- Skomurski F.N., Rosso K.M., Krupka K.M., McGrail B.P. // Environ. Sci. Technol. 2010. Vol. 44. P. 5855–5861. https://doi.org/10.1021/es100069x
- Smith F.N., Um W., Taylor C.D., Kim D.S., Schweiger M.J., Kruger A.A. // Environ. Sci. Technol. 2016. Vol. 50. N 10. P. 5216–5224. https://doi.org/10.1021/acs.est.6b00200
- McBeth J.M., Lloyd J.R., Law G.T.W., Livens F.R., Burke I.T., Morris K. // Mineral. Mag. 2011. Vol. 75. N 4. P. 2419–2430. https://doi.org/10.1180/minmag.2011.075.4.2419
- Pearce C.I., Icenhower J.P., Asmussen R.M., Tratnyek P.G., Rosso K.M., Lukens W.W., Qafoku N.P. // ACS Earth Space Chem. 2018. Vol. 2. N 6. P. 532–547. https://doi.org/10.1021/acsearthspacechem.8b00015
- El-Waer S., German K.E., Peretrukhin V.F. // J. Radioanal. Nucl. Chem. 1992. Vol. 157. P. 3–14. https://doi.org/10.1007/BF02039772
- Chen Z., Zhang P., Brown K.G., van der Sloot H.A., Meeussen J.C., Garrabrants A.C. et al. // J. Hazard. Mater. 2023. Vol. 449. Article 131004. https://doi.org/10.1016/j.jhazmat.2023.131004
- Pearce C.I., Moore R.C., Morad J.W., Asmussen R.M., Chatterjee S., Lawter A.R. et al. // Sci. Total Environ. 2020. Vol. 716. ID132849. https://doi.org/10.1016/j.scitotenv.2019.06.195
- German K.E., Shiryaev A.A., Safonov A.V., Obruchnikova Y.A., Ilin V.A., Tregubova V.E. // Radiochim. Acta. 2015. Vol. 103. N 3. P. 199. https://doi.org/10.1515/ract-2014–2369
- Fan D., Anitori R.P., Tebo B.M., Tratnyek P.G., Lezama Pacheco J.S., Kukkadapu R.K. et al. // Environ. Sci. Technol. 2014. Vol. 48. N 13. P. 7409–7417. https://doi.org/10.1021/es501607s
- Rodriguez D.M., Mayordomo N., Schild D., Azzam S.S.A., Brendler V., Mueller K., Stumpf T. // Chemosphere. 2021. Vol. 281. Article 130904. https://doi.org/10.1016/j.chemosphere.2021.130904
- Hatfield A.C. Aqueous geochemistry of rhenium and chromium in saltstone: Implications for understanding technetium mobility in saltstone: Doctoral Dissertation. Clemson Univ., 2013.
- Peretroukhine V., Sergeant C., Devès G., Poulain S., Vesvres M.H., Thomas B., Simonoff M. // Radiochim. Acta. 2006. Vol. 94. N 9–11. P. 665–669. https://doi.org/10.1524/ract.2006.94.9-11.665
- German K.E., Peretrukhin V.F., Belyaeva L.I., Kuzina O.V. // 4th Int. Conf. “Technetium and Rhenium in Chemistry and Nuclear Medicine,” Tc’94, Padua, Italy, Sept. 1994; J. Nucl. Biol. Med. 1994. Vol. 38. N 3. P. 406.
- German K.E., Peretrukhin V.F., Belyaeva L.I., Kuzina O.V. // Technetium and Rhenium Chemistry and Nuclear Medicine 4 / Eds. M. Nicolini, G. Bandoli, U. Mazzi. SGEditoriali, 1994. P. 93–97.
- Zhuang Η.E., Zheng J.S., Xia D.Y., Zhu Z.G. // Radiochim. Acta. 1995. Vol. 68. N 4. P. 245–250. https://doi.org/10.1524/ract.1995.68.4.245
- Данилов С.С., Фролова А.В., Тетерин А.Ю., Маслаков К.И., Тетерин Ю.А., Куликова С.А., Винокуров С.Е. // Радиохимия. 2021. Т. 63. № 6. С. 582. https://doi.org/10.31857/S0033831121060101
- Герасимов В.Н., Крючков С.В., Кузина А.Ф., Кулаков В.М., Пирожков С.В., Спицын В.И. // ДАН СССР. 1982. Т. 266. C. 148.
- Wester D.W., White D.H., Miller F.W., Dean R.T., Schreifels J.A., Hunt J.E. // Inorg. Chim. Acta. 1987. Vol. 131. N 2. P. 163. https://doi.org/10.1016/s0020-1693(00)96019-5
- Thompson M., Nunn A.D., Treher E.N. // Anal. Chem. 1986. Vol. 58. P. 3100. https://doi.org/10.1021/AC00127A041
- Shirley D.A. // Phys. Rev. B. 1972. Vol. 5. P. 4709. https://doi.org/10.1103/PhysRevB.5.4709
- Панов А.П. Пакет программ обработки спектров SPRO и язык программирования SL: Препринт ИАЭ-6019/15. М.: Ин-т атом. энергии, 1997. 31 c.
- Немошкаленко В.В., Алешин В.Г. Электронная спектроскопия кристаллов. Киев: Наук. думка, 1976. 336 с.
- Band I.M., Kharitonov Yu.I., Trzhaskovskaya M.B. // At. Data Nucl. Data Tables. 1979. Vol. 23. P. 443. https://doi.org/10.1016/0092-640X(79)90027-5.
- Gerasimov V.N., Kryutchkov S.V., German K.E., Kulakov V.M., Kuzina A.F. // Technetium and Rhenium in Chemistry and Nuclear Medicine. Vol. 3 / Eds. M. Nicolini, G. Bandoli, U. Mazzi. New York: Raven, 1990. P. 231–252.
- Нефедов В.И. Рентгеноэлектронная спектроскопия химических соединений: Справочник. М.: Химия, 1984. 256 с.
- Sosulnikov M.I., Teterin Yu.A. // J. Electron. Spectrosc. Relat. Phenom. 1992. Vol. 59. P. 111. https://doi.org/10.1016/0368-2048(92)85002-O
- Childs B.C., Braband H., Lawler K., Mast D.S., Bigler L., Stalder U. et al. // Inorg. Chem. 2016. Vol. 55. N 20. P. 10445. https://doi.org/10.1021/acs.inorgchem.6b01683
- Rodriguez E.E., Poineau F., Llobet A., Sattelberger A.P., Bhattacharjee J., Waghmare U.V. et al. // J. Am. Chem. Soc. 2007. Vol. 129. P. 10244. https://doi.org/10.1021/ja0727363
- Rodríguez D.M., Mayordomo N., Scheinost A.C., Schild D., Brendler V., Müller K., Stumpf T. // Environ. Sci. Technol. Vol. 2020. 54. P. 2678–2687. https://doi.org/10.1021/acs.est.9b05341
- Bagus P.S., Nelin C.J., Brundle C.R., Crist B.V., Lahiri N., Rosso K.M. // J. Chem. Phys. 2021. Vol. 154. Article 094709. https://doi.org/10.1063/5.0039765
- Zimmerman R., Steiner P., Claessen R., Reinert F., Hüfner S., Blaha P., Dufek P. // J. Phys. Condens. Matter. 1999. Vol. 11. P. 1657. https://doi.org/10.1088/0953-8984/11/7/002
- Miedema P.S., Borgatti F., Offi F., Panaccione G., Groota F.M.F. // J. Electron Spectrosc. Relat. Phenom. 2015. Vol. 203. P. 8. https://doi.org/10.1016/j.elspec.2015.05.003
- Biesinger M.C., Payne B.P., Grosvenor A.P., Laua L.W.M., Gerson A.R., Smart R. St.C. // Appl. Surf. Sci. 2011. Vol. 257. P. 2717. https://doi.org/10.1016/j.apsusc.2010.10.051
- Droubay T., Chambers S.A. // Phys. Rev. B. 2001. Vol. 64. Article 205414. https://doi.org/10.1103/PhysRevB.64.205414
Дополнительные файлы
