Extraction of Uranyl Tricarbonate Complex by Clay Materials from Aqueous Solutions

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The processes of extraction of the tricarbonate complex of uranyl [UO2(CO3)3]4– from aqueous solutions on clay powders from kaolin clays of the Kampanovskoye deposit and from bentonite clays of the 10th Khutor and Dinozavrovoe deposits, as well as their mixtures, were investigated. The studies were carried out with clay powders, both untreated and treated with water, solutions of 0.5 mol/l Na2CO3 and NaNO3, and 2 mol/l solutions of NaOH. It has been shown that the [UO2(CO3)3]4- complex is not sorbed on clay materials from aqueous solutions under static conditions. It has been established that filtration of an aqueous solution of [UO2(CO3)3]4- through columns with clay mixtures allows one to extract up to 87% of uranium from the amount passed through the column

Full Text

Restricted Access

About the authors

E. P. Krasavina

Frimkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences

Email: kulyukhin@ipc.rssi.ru
Russian Federation, Leninskii pr. 31, korp. 4, Moscow, 119071

K. V. Martynov

Frimkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences

Email: kulyukhin@ipc.rssi.ru
Russian Federation, Leninskii pr. 31, korp. 4, Moscow, 119071

K. G. Arzumanova

Frimkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences

Email: kulyukhin@ipc.rssi.ru
Russian Federation, Leninskii pr. 31, korp. 4, Moscow, 119071

A. A. Bessonov

Frimkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences

Email: kulyukhin@ipc.rssi.ru
Russian Federation, Leninskii pr. 31, korp. 4, Moscow, 119071

A. V. Gordeev

Frimkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences

Email: kulyukhin@ipc.rssi.ru
Russian Federation, Leninskii pr. 31, korp. 4, Moscow, 119071

A. Y. Bomchuk

Frimkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences

Email: kulyukhin@ipc.rssi.ru
Russian Federation, Leninskii pr. 31, korp. 4, Moscow, 119071

V. O. Zharkova

Frimkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences

Email: kulyukhin@ipc.rssi.ru
Russian Federation, Leninskii pr. 31, korp. 4, Moscow, 119071

S. A. Kulyukhin

Frimkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences

Author for correspondence.
Email: kulyukhin@ipc.rssi.ru
Russian Federation, Leninskii pr. 31, korp. 4, Moscow, 119071

References

  1. Мартынов К.В., Захарова Е.В., Дорофеев А.Н., Зубков А.А., Прищеп А.А. // Радиоактивные отходы. 2020. № 3 (12). С. 39–53. https://doi.org/10.25283/2587-9707-2020-3-39-53
  2. Мартынов К.В., Захарова Е.В., Дорофеев А.Н., Зубков А.А., Прищеп А.А. // Радиоактивные отходы. 2020. № 4 (13). С. 42–57. https://doi.org/10.25283/2587-9707-2020-4-42-57
  3. Чубреев Д.О., Кузнецов Г.В. // Изв. Томского политехн. ун-та. Инжиниринг георесурсов. 2016. Т. 327. № 2. С. 83–87.
  4. Sellin P., Leupin O.X. // Clays Clay Miner. 2013. Vol. 61. N6. P. 477–498. https://doi.org/00010.1346/CCMN.2013.0610601
  5. Tan Y., Xu X., Ming H., Sun D. // Ann. Nucl. Energy. 2022. Vol. 165. N108660. https://doi.org/10.1016/j.anucene.2021.108660
  6. Калистратов А.А., Ильина О.А., Юданова А.О., Сёмин П.В., Муздыбаева Ш.А. // Радиоактивные отходы. 2023. № 2 (23). С. 82–89. https://doi.org/10.25283/2587-9707-2023-2-82-89
  7. Медведева Н.А., Ситева О.С., Середин В.В. // Вестн. ПНИПУ. Геология. Нефтегаз. и горное дело. 2018. Т. 18. № 2. С. 118–128. https://doi.org/10.15593/2224-9923/2018.4.2
  8. Везенцев А.И., Воловичева Н.А., Королькова С.В., Соколовский П.В. // ЖФХ. 2022. Т. 96. № 2. С. 259–265. https://doi.org/10.31857/S0044453722010265
  9. Wang B., Wagnon K.B., Ainsworth C.C. et al. указать всех // Abstracts. 11th Int. Conf. on the Chemistry and Migration Behaviour of Actinides and Fission Products in the Geosphere “Migration’07.” Munich, Germany, 2007. P. 599–605.
  10. Паспорт «Активный оксид алюминия шарик». ТУ 2163-004-81279372-11. М.: SORBIS Group.
  11. JCPDS – Int. Centre for Diffraction Data. PDF 00-006-0221, Al2Si2O5(OH)4 (каолинит).
  12. JCPDS – Int. Centre for Diffraction Data. PDF01-087-2096, кварц.
  13. JCPDS – Int. Centre for Diffraction Data. PDF 01-089-8572, KAlSi3O8 (калиевый полевой шпат).
  14. JCPDS – Int. Centre for Diffraction Data. PDF 00-002-0056, KAl3Si3O10(OH)2 (иллит).
  15. JCPDS – Int. Centre for Diffraction Data. PDF 00-002-0014, NaMgAlSiO2(OH)⋅H2O (монтмориллонит в Na-форме).
  16. JCPDS – Int. Centre for Diffraction Data. PDF 00-013-0135, Ca0.2(Al, Mg)2Si4O10(OH)2⋅4H2O (монтмориллонит в Ca-форме).
  17. JCPDS – Int. Centre for Diffraction Data. PDF 00-007-0330, KAl4(Si, Al)8O20(OH)4⋅xH2O (иллитмонтмориллонит).
  18. JCPDS – Int. Centre for Diffraction Data. PDF 00-003-0593, CaCO3 (кальцит).
  19. JCPDS – Int. Centre for Diffraction Data. PDF 00-014-0500, Na5AlO4.
  20. JCPDS – Int. Centre for Diffraction Data. PDF 00-033-1279, Na2Si2O5⋅5H2O.
  21. JCPDS – Int. Centre for Diffraction Data. PDF 00-003-0433, Na2SiO3⋅5H2O.
  22. JCPDS – Int. Centre for Diffraction Data. PDF 00-027-0708, NaHSi2O5.
  23. JCPDS – Int. Centre for Diffraction Data. PDF 01-072-1011, K4(H4Si4O12).
  24. JCPDS – Int. Centre for Diffraction Data. PDF 01-072-0578, Na2CO3⋅H2O.
  25. Ja-Young Goo, Bong-Ju Kim, Jang-Soon Kwon, Ho Young Jo // Appl. Clay Sci. 2023. Vol. 245. N 107141. https://doi.org/10.1016/j.clay.2023.107141
  26. N’Guessan N.E., Joussein E., Courtin-Nomade A., Paineau E., Soubrand M., Grauby O., Robin V., Coelho Diogo C., Vantelon D., Launois P., Fondanèche P., Rossignol S., Texier-Mandoki N., Bourbon X. // Appl. Clay Sci. 2021. Vol. 205. N 106037. https://doi.org/10.1016/j.clay.2021.106037
  27. Pelegrí J., Lavina M., Bernachy-Barbe F., Imbert C., Idiart A., Gaboreau S., Cochepin B., Michau N., Talandier J. // Appl. Clay Sci. 2023. Vol. 245. N 107157. https://doi.org/10.1016/j.clay.2023.107157
  28. Семенкова А.С., Ильина О.А., Крупская В.В., Закусин С.В., Доржиева О.В., Покидько Б.В., Романчук А.Ю., Калмыков С.Н. // Вестн. Моск. ун-та. Сер. 2: Химия. 2021. Т. 62. № 5. С. 425–434.
  29. Анюхина А.В. Закономерности изменения адсорбционных свойств глин при техногенном воздействии: Автореф. дис. … к.г.– м.н. Пермь: Пермский нац. исслед. политехн. ун-т, 2022. 20 с.
  30. Прядко А.В., Закусин С.В., Тюпина Е.А. // Успехи в химии и хим. технологии. 2020. Т. 34. № 9. С. 17–19.
  31. Carter D.L., Mortland M.M., Kemper W.D. Specific surface // Methods of Soil Analysis. Part 1: Physical and Mineralogical Methods / Ed. A. Klute. Madison: Am. Soc. of Agronomy–Soil Sci. Soc. of Am., 1986. 2nd Ed. Ch. 16. https://doi.org/10.2136/sssabookser5.1.2ed.c16
  32. Kuila U., Prasad M. // Geophys. Prosp. 2013. Vol. 61. P. 341–362. https://doi.org/10.1111/1365-2478.12028
  33. Uddin M.K. // Chem. Eng. J. 2017. Vol. 308. P. 438–462. https://doi.org/10.1016/j.cej.2016.09.029
  34. Macht F., Eusterhues K., Pronk G.J., Totsche K.U. // Appl. 34. Clay Sci. 2011. Vol. 53. P. 20–26. https://doi.org/10.1016/j.clay.2011.04.006
  35. Глинистые минералы как дисперсная фаза буровых растворов // Курс лекций Тюменского индустриального ун-та. Электронный ресурс https://www.tyuiu.ru/files/file.2008-10-12.doc (дата посещения: 29 марта 2024 г.)

Supplementary files

Supplementary Files
Action
1. JATS XML
2. 1. Modified clay KGPO-23 (1 – KGPO-23-W, 2 – KGPO-23-Carb, 3 – KGPO-23-Az, 4 – KGPO-23-W-Alk, 5 –KGPO-23-Carb-Alk, 6 – KGPO-23-Az-Alk; K – kaolinite, Al2Si2O5(OH)4 [11], Q – quartz [12], F – potassium feldspar, KAlSi3O8 [13], Il – illite, KAl3Si3O10(OH)2 [14], Na-Al – sodium aluminate, Na5AlO4 [19], Na-Si – sodium silicate, Na2Si2O5⋅5H2O [20]).

Download (249KB)
3. 2. Modified clay kgpo-28 (1 – kgpo-28-W, 2 – kgpo-28-Carb, 3 –kgpo-28-az, 4 – kgpo-28-W-ALK, 5 –kgpo-28-Carb-ALK, 6 – kgpo-28-az-ALK; K – kaolinite, al2si2o5(Oh)4 [11], Q – quartz [12], F – potassium feldspar, KALSI3O8 [13], IL – Illite, KAL3SI3O10(OH)2 [14], Na-si – aqueous sodium silicate, NA2SIO3⋅5H2O [21], K-si – potassium silicate, K4(H4SI4O12) [23]).

Download (219KB)
4. Pain. 3. Modified HBGP clay (1 – HBGP-W, 2 – HBGP-Carb, 3 – HBGP-Az, 4 – HBGP-W-Alk, 5 – HBGP-Carb-Alk, 6 – HBGP-Az-Alk; Q – quartz [12], F – potassium feldspar, KAlSi3O8 [13], Na-Mt – montmorillonite in the Na-form, namgalsio2(OH)⋅H2O [15], CA-Mt –montmorillonite in Ca form, CA0.2(Al, Mg)2SI4O10(oh)2⋅4H2O [16], Il-Mt–Illite-montmorillonite, kal4(Si, Al)8o20(Oh)4⋅xh2o [17], C – calcite, CaCO3 [18], Na-si – aqueous sodium silicate, Na2sio3⋅5H2O [21], Na-SI1 – sodium hydrosilicate, Nahsi2o5 [22], na-Si2 – aqueous sodium silicate, na2si2o5⋅5h2o [20]).

Download (220KB)
5. 4. Modified clay DB (1 – DB-W, 2–DB-Carb, 3– DB-Az, 4– DB-W-Alk, 5– DB-Carb-Alk, 6–DB-Az-Alk; Q –quartz [12], Na-Mt – montmorillonite in Na form, NaMgAlSiO2(OH)⋅H2O [15], Ca-Mt –montmorillonite in Ca form, Ca0.2(Al, Mg)2Si4O10(OH)2⋅4H2O [16], Il-Mt – illite-montmorillonite, KAl4(Si, Al)8O20(OH)4⋅xH2O [17], C – calcite, CaCO3 [18], Na-Al – sodium aluminate, Na5AlO4 [19], Na-Si – aqueous sodium silicate, Na2SiO3⋅5H2O [21], Crb – aqueous sodium carbonate Na2CO3⋅H2O [22]).

Download (277KB)
6. Fig. 5. Photograph of columns with clay material in the process of saturation with a solution of [UO2(CO3)3]4– and filtration of the solution (a – columns with an unconsolidated air-dry mixture of clay materials; b–d – view of a column with clay material in the process of saturation with a solution of [UO2(CO3)3]4– and filtration of the solution after 45 min (b), 70 h (c), 120 h (d); e – the type of columns at the initial moment of washing with distilled water; mixtures of clay materials (in mass ratio 1 : 1) in columns: 1 – KGPO-28/DB, 2 – KGPO-23/HBGP, 3 – KGPO-28/HBGP, 4 – KGPO-23/DB).

Download (137KB)
7. Fig. 6. Change in the height of the water layer above the wet clay material through which the solution [UO2(CO3)3]4–was previously passed. (Mixtures of clay materials (in mass ratio 1 : 1) in columns: 1 – KGPO-28/DB, 2 – KGPO-23/HBGP, 3 – KGPO-28/HBGP, 4 – KGPO-23/DB).

Download (74KB)

Copyright (c) 2024 Russian Academy of Sciences