Extraction of Uranyl Tricarbonate Complex by Clay Materials from Aqueous Solutions
- Authors: Krasavina E.P.1, Martynov K.V.1, Arzumanova K.G.1, Bessonov A.A.1, Gordeev A.V.1, Bomchuk A.Y.1, Zharkova V.O.1, Kulyukhin S.A.1
-
Affiliations:
- Frimkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences
- Issue: Vol 66, No 3 (2024)
- Pages: 253-262
- Section: Articles
- URL: https://kazanmedjournal.ru/0033-8311/article/view/681637
- DOI: https://doi.org/10.31857/S0033831124030061
- ID: 681637
Cite item
Abstract
The processes of extraction of the tricarbonate complex of uranyl [UO2(CO3)3]4– from aqueous solutions on clay powders from kaolin clays of the Kampanovskoye deposit and from bentonite clays of the 10th Khutor and Dinozavrovoe deposits, as well as their mixtures, were investigated. The studies were carried out with clay powders, both untreated and treated with water, solutions of 0.5 mol/l Na2CO3 and NaNO3, and 2 mol/l solutions of NaOH. It has been shown that the [UO2(CO3)3]4- complex is not sorbed on clay materials from aqueous solutions under static conditions. It has been established that filtration of an aqueous solution of [UO2(CO3)3]4- through columns with clay mixtures allows one to extract up to 87% of uranium from the amount passed through the column
Full Text

About the authors
E. P. Krasavina
Frimkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences
Email: kulyukhin@ipc.rssi.ru
Russian Federation, Leninskii pr. 31, korp. 4, Moscow, 119071
K. V. Martynov
Frimkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences
Email: kulyukhin@ipc.rssi.ru
Russian Federation, Leninskii pr. 31, korp. 4, Moscow, 119071
K. G. Arzumanova
Frimkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences
Email: kulyukhin@ipc.rssi.ru
Russian Federation, Leninskii pr. 31, korp. 4, Moscow, 119071
A. A. Bessonov
Frimkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences
Email: kulyukhin@ipc.rssi.ru
Russian Federation, Leninskii pr. 31, korp. 4, Moscow, 119071
A. V. Gordeev
Frimkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences
Email: kulyukhin@ipc.rssi.ru
Russian Federation, Leninskii pr. 31, korp. 4, Moscow, 119071
A. Y. Bomchuk
Frimkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences
Email: kulyukhin@ipc.rssi.ru
Russian Federation, Leninskii pr. 31, korp. 4, Moscow, 119071
V. O. Zharkova
Frimkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences
Email: kulyukhin@ipc.rssi.ru
Russian Federation, Leninskii pr. 31, korp. 4, Moscow, 119071
S. A. Kulyukhin
Frimkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences
Author for correspondence.
Email: kulyukhin@ipc.rssi.ru
Russian Federation, Leninskii pr. 31, korp. 4, Moscow, 119071
References
- Мартынов К.В., Захарова Е.В., Дорофеев А.Н., Зубков А.А., Прищеп А.А. // Радиоактивные отходы. 2020. № 3 (12). С. 39–53. https://doi.org/10.25283/2587-9707-2020-3-39-53
- Мартынов К.В., Захарова Е.В., Дорофеев А.Н., Зубков А.А., Прищеп А.А. // Радиоактивные отходы. 2020. № 4 (13). С. 42–57. https://doi.org/10.25283/2587-9707-2020-4-42-57
- Чубреев Д.О., Кузнецов Г.В. // Изв. Томского политехн. ун-та. Инжиниринг георесурсов. 2016. Т. 327. № 2. С. 83–87.
- Sellin P., Leupin O.X. // Clays Clay Miner. 2013. Vol. 61. N6. P. 477–498. https://doi.org/00010.1346/CCMN.2013.0610601
- Tan Y., Xu X., Ming H., Sun D. // Ann. Nucl. Energy. 2022. Vol. 165. N108660. https://doi.org/10.1016/j.anucene.2021.108660
- Калистратов А.А., Ильина О.А., Юданова А.О., Сёмин П.В., Муздыбаева Ш.А. // Радиоактивные отходы. 2023. № 2 (23). С. 82–89. https://doi.org/10.25283/2587-9707-2023-2-82-89
- Медведева Н.А., Ситева О.С., Середин В.В. // Вестн. ПНИПУ. Геология. Нефтегаз. и горное дело. 2018. Т. 18. № 2. С. 118–128. https://doi.org/10.15593/2224-9923/2018.4.2
- Везенцев А.И., Воловичева Н.А., Королькова С.В., Соколовский П.В. // ЖФХ. 2022. Т. 96. № 2. С. 259–265. https://doi.org/10.31857/S0044453722010265
- Wang B., Wagnon K.B., Ainsworth C.C. et al. указать всех // Abstracts. 11th Int. Conf. on the Chemistry and Migration Behaviour of Actinides and Fission Products in the Geosphere “Migration’07.” Munich, Germany, 2007. P. 599–605.
- Паспорт «Активный оксид алюминия шарик». ТУ 2163-004-81279372-11. М.: SORBIS Group.
- JCPDS – Int. Centre for Diffraction Data. PDF 00-006-0221, Al2Si2O5(OH)4 (каолинит).
- JCPDS – Int. Centre for Diffraction Data. PDF01-087-2096, кварц.
- JCPDS – Int. Centre for Diffraction Data. PDF 01-089-8572, KAlSi3O8 (калиевый полевой шпат).
- JCPDS – Int. Centre for Diffraction Data. PDF 00-002-0056, KAl3Si3O10(OH)2 (иллит).
- JCPDS – Int. Centre for Diffraction Data. PDF 00-002-0014, NaMgAlSiO2(OH)⋅H2O (монтмориллонит в Na-форме).
- JCPDS – Int. Centre for Diffraction Data. PDF 00-013-0135, Ca0.2(Al, Mg)2Si4O10(OH)2⋅4H2O (монтмориллонит в Ca-форме).
- JCPDS – Int. Centre for Diffraction Data. PDF 00-007-0330, KAl4(Si, Al)8O20(OH)4⋅xH2O (иллитмонтмориллонит).
- JCPDS – Int. Centre for Diffraction Data. PDF 00-003-0593, CaCO3 (кальцит).
- JCPDS – Int. Centre for Diffraction Data. PDF 00-014-0500, Na5AlO4.
- JCPDS – Int. Centre for Diffraction Data. PDF 00-033-1279, Na2Si2O5⋅5H2O.
- JCPDS – Int. Centre for Diffraction Data. PDF 00-003-0433, Na2SiO3⋅5H2O.
- JCPDS – Int. Centre for Diffraction Data. PDF 00-027-0708, NaHSi2O5.
- JCPDS – Int. Centre for Diffraction Data. PDF 01-072-1011, K4(H4Si4O12).
- JCPDS – Int. Centre for Diffraction Data. PDF 01-072-0578, Na2CO3⋅H2O.
- Ja-Young Goo, Bong-Ju Kim, Jang-Soon Kwon, Ho Young Jo // Appl. Clay Sci. 2023. Vol. 245. N 107141. https://doi.org/10.1016/j.clay.2023.107141
- N’Guessan N.E., Joussein E., Courtin-Nomade A., Paineau E., Soubrand M., Grauby O., Robin V., Coelho Diogo C., Vantelon D., Launois P., Fondanèche P., Rossignol S., Texier-Mandoki N., Bourbon X. // Appl. Clay Sci. 2021. Vol. 205. N 106037. https://doi.org/10.1016/j.clay.2021.106037
- Pelegrí J., Lavina M., Bernachy-Barbe F., Imbert C., Idiart A., Gaboreau S., Cochepin B., Michau N., Talandier J. // Appl. Clay Sci. 2023. Vol. 245. N 107157. https://doi.org/10.1016/j.clay.2023.107157
- Семенкова А.С., Ильина О.А., Крупская В.В., Закусин С.В., Доржиева О.В., Покидько Б.В., Романчук А.Ю., Калмыков С.Н. // Вестн. Моск. ун-та. Сер. 2: Химия. 2021. Т. 62. № 5. С. 425–434.
- Анюхина А.В. Закономерности изменения адсорбционных свойств глин при техногенном воздействии: Автореф. дис. … к.г.– м.н. Пермь: Пермский нац. исслед. политехн. ун-т, 2022. 20 с.
- Прядко А.В., Закусин С.В., Тюпина Е.А. // Успехи в химии и хим. технологии. 2020. Т. 34. № 9. С. 17–19.
- Carter D.L., Mortland M.M., Kemper W.D. Specific surface // Methods of Soil Analysis. Part 1: Physical and Mineralogical Methods / Ed. A. Klute. Madison: Am. Soc. of Agronomy–Soil Sci. Soc. of Am., 1986. 2nd Ed. Ch. 16. https://doi.org/10.2136/sssabookser5.1.2ed.c16
- Kuila U., Prasad M. // Geophys. Prosp. 2013. Vol. 61. P. 341–362. https://doi.org/10.1111/1365-2478.12028
- Uddin M.K. // Chem. Eng. J. 2017. Vol. 308. P. 438–462. https://doi.org/10.1016/j.cej.2016.09.029
- Macht F., Eusterhues K., Pronk G.J., Totsche K.U. // Appl. 34. Clay Sci. 2011. Vol. 53. P. 20–26. https://doi.org/10.1016/j.clay.2011.04.006
- Глинистые минералы как дисперсная фаза буровых растворов // Курс лекций Тюменского индустриального ун-та. Электронный ресурс https://www.tyuiu.ru/files/file.2008-10-12.doc (дата посещения: 29 марта 2024 г.)
Supplementary files
