The Support Loading Effect on Extraction-Chromatography Separation of Ytterbium and Lutetium Using 2-Ethylhexylphosphonic Acid Mono-2-Ethylhexyl Ester Based Sorbent

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The effect of the extractant content on the efficiency of ytterbium and lutetium separation from nitric acid solutions was studied for a sorbent made by impregnating Prefilter resin with 2-ethylhexylphosphonic acid mono-2-ethylhexyl ester. It is shown that the distribution coefficients of Yb and Lu and their retention coefficients in the column increase as the extractant content increases. At the nitric acid concentration of 1.5 M, the effective separation of Yb and Lu is provided by the sorbent containing at least 40 wt % extractant. When separating equal amounts of Yb and Lu (0.5 mg each) in a column with 10 cm3 of sorbent at an elution rate of 1 mL/min and a temperature of 50°C, the yield of lutetium in the purified fraction exceeds 85%, providing Yb relative content in the Lu fraction less than 0.14% (1 atom of Yb per 700 atoms of Lu).

全文:

受限制的访问

作者简介

K. Bobrovskaya

Kapitsa Research Institute of Technology, Ulyanovsk State University

Email: rostislavkuznetsov@yandex.ru
俄罗斯联邦, Universitetskaya nab. 1, korp. 4, Ulyanovsk, 432000

R. Kuznetsov

Kapitsa Research Institute of Technology, Ulyanovsk State University

编辑信件的主要联系方式.
Email: rostislavkuznetsov@yandex.ru
俄罗斯联邦, Universitetskaya nab. 1, korp. 4, Ulyanovsk, 432000

M. Lisova

Kapitsa Research Institute of Technology, Ulyanovsk State University

Email: rostislavkuznetsov@yandex.ru
俄罗斯联邦, Universitetskaya nab. 1, korp. 4, Ulyanovsk, 432000

A. Fomin

Kapitsa Research Institute of Technology, Ulyanovsk State University

Email: rostislavkuznetsov@yandex.ru
俄罗斯联邦, Universitetskaya nab. 1, korp. 4, Ulyanovsk, 432000

参考

  1. Сайт компании Eichrom. https://www.eichrom.com/products/ln-resins/ Дата обращения 05.06.2024.
  2. Сайт компании Triskem. https://www.triskem-international.com/scripts/files/6215151d0db8b5.49670533/ PS_TK211-Resin_EN_220222.pdf Дата обращения 05.06.2024.
  3. Van de Voorde M., Van Hecke K., Cardinaels T., Binnemans K. // Coord. Chem. Rev. 2019. Vol. 382. P. 103. https://doi.org/10.1016/j.ccr.2018.11.007
  4. Bertelsen E.R., Jackson J.A., Shafer J.C. // Solvent Extr. Ion Exch. 2020. Vol. 38. N 3. P. 251. https://doi.org/10.1080/07366299.2020.1720958
  5. Horwitz E.P., McAlister D.R., Bond A.H., Barrans R.E., Williamson J.M. // Appl. Radiat. Isot. 2005. Vol. 63. P. 23. https://doi.org/10.1016/j.apradiso.2005.02.005
  6. McAlister D.R., Horwitz E.P. // Solvent Extr. Ion Exch. 2007. Vol. 25. N 6. P. 757. https://doi.org/10.1080/07366 290701634594
  7. Horwitz E.P., McAlister D.R., Dietz M.L. // Sep. Sci. Technol. 2006. Vol. 41. № 10. P. 2163. https://doi.org/10.1080/01496390600742849
  8. Smith C.D., Dietz M.L. // Talanta. 2021. Vol. 222. ID 121541. https://doi.org/10.1016/j.talanta.2020.121541
  9. Matsunaga H., Ismail A.A., Wakui Y., Yokoyama T. // React. Funct. Polym. 2001. Vol. 49. P. 189. https://doi.org/10.1016/S1381-5148(01)00077-3
  10. Kabay N., Cortina J.L., Trochimczuk A., Streat M. // React. Funct. Polym. 2010. Vol. 70. N 8. P. 484. https://doi.org/10.1016/j.reactfunctpolym.2010.01.005
  11. Bao Shenxu, Tang Yongping, Zhang Yimin, Liang Liang // Chem. Eng. Technol. 2016. 39. N 8. P. 1377. https://doi.org/10.1002/ceat.201500324
  12. Nishihama S., Harano T., Yoshizuka K. // Sep. Sci. Technol. 2017. Vol. 53. N 7. P. 1027. https://doi.org/10.1080/01496395.2017.1310895
  13. Monroy-Guzman F., Barreiro F.J., Salinas E.J. and Treviño A.L.V. // World J. Nucl. Sci. Technol. 2015. Vol. 5. P. 111. http://dx.doi.org/10.4236/wjnst.2015.52011
  14. Monroy-Guzman F., de la Cruz Barba C.d.C., Jaime Salinas E., Garibay-Feblés V., Nava Entzana T.N. // Metals. 2020. Vol. 10. P. 1390. https://doi.org/10.3390/met10101390
  15. Сайт фирмы DuPont. https://www.dupont.com/products/amberchromcg71m.html Дата обращения 05.06.2024.
  16. Prefilter Resin SDS. https://www.eichrom.com/wp-content/uploads/2018/03/Prefilter-Bulk-and-Cartridge.pdf Дата обращения 05.06.2024.
  17. Сайт компании TrisKem International. https://www.triskem-international.com/scripts/files/5f4634457e5157.33298423/PS_Prefilter-Resin_EN_160927.pdf Дата обращения 28.02.2024.
  18. Zhengshui H., Ying P., Wanwa M., Xun F. // Solvent Extr. Ion Exch. 1995. Vol. 13. P. 965. https://doi.org/10.1080/07366299508918312
  19. Qi D. // Hydrometallurgy of Rare Earths. Elsevier, 2018. P. 187–389. https://doi.org/10.1016/B978-0-12-813920-2.00002-7
  20. Амбул Е.В., Голецкий Н.Д., Медведева А.И., Наумов А.А., Пузиков Е.А., Афонин М.А., Шишкин Д.Н. // Радиохимия. 2022. Т. 64. № 3. С. 233. https://doi.org/10.31857/S0033831122030054
  21. AmberChrom™ CG71M Chromatography Resin Product Data Sheet. https://www.dupont.com/content/dam/dupont/amer/us/en/water-solutions/public/documents/en/IER-AmberChrom-CG71M-PDS-45-D01188-en.pdf]/
  22. Алексеев И.Е., Кротов С.А. // Радиохимия. 2023. Т. 65. № 2. C. 172. https://doi.org/10.31857/S0033831123020065

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Dependence of k' Yb and Lu on nitric acid concentration at extractant contents of 20 (♦), 30 (■), 40 (▲), and 50 ().

下载 (313KB)
3. Fig. 2. Dependence of Dw and k' of Yb and Lu on the extractant content in the resin at nitric acid concentrations of 0.5 (♦), 0.65 (■), 0.8 (▲), and 1 mol/L ( ).

下载 (645KB)
4. Fig. 3. Yb (○) and Lu (□) yield curves on LN2P sorbent at 25С and extractant content of 30 (a), 40 (b), and 50% (c) and at 50С and extractant content of 30 (d), 40 (e), and 50% (f). The dotted line indicates the boundaries of the zones.

下载 (939KB)
5. Fig. 4. Peak width of the Lu output curve (a) and width of the mixing zone of the Yb and Lu output curves (b) as a function of the extractant fraction in the sorbent at 25 ( ) and 50С (■).

下载 (333KB)

版权所有 © Russian Academy of Sciences, 2024