Ограниченные и гладкие управления колебаниями в системах, заданных дифференциальными и интегро-дифференциальными уравнениями
- Авторы: Бобылева Т.Н.1, Гусев И.М.2, Шамаев А.С.3
 - 
							Учреждения: 
							
- Национальный исследовательский Московский государственный строительный университет
 - Московский государственный университет им. М.В. Ломоносова
 - Институт проблем механики им. А.Ю. Ишлинского РАН
 
 - Выпуск: Том 87, № 5 (2023)
 - Страницы: 820-828
 - Раздел: Статьи
 - URL: https://kazanmedjournal.ru/0032-8235/article/view/675100
 - DOI: https://doi.org/10.31857/S0032823523050053
 - EDN: https://elibrary.ru/QHPNCH
 - ID: 675100
 
Цитировать
Полный текст
Аннотация
В работе рассматривается задача о гашении колебаний мембраны и пластины с помощью сил, распределенных по всей площади мембраны и пластины. Предлагаемый метод позволяет рассматривать ограничения не только на абсолютную величину управления, но и на абсолютную величину производных от функций, задающих управление. Приводятся достаточные условия на начальные условия, при которых задача приведения системы в покой за конечное время разрешима, оценивается время приведения в покой.
Об авторах
Т. Н. Бобылева
Национальный исследовательский Московский государственный строительный университет
							Автор, ответственный за переписку.
							Email: tatyana2211@outlook.com
				                					                																			                												                								Россия, Москва						
И. М. Гусев
Московский государственный университет им. М.В. Ломоносова
							Автор, ответственный за переписку.
							Email: gusevilya94@yandex.ru
				                					                																			                												                								Россия, Москва						
А. С. Шамаев
Институт проблем механики им. А.Ю. Ишлинского РАН
							Автор, ответственный за переписку.
							Email: sham@rambler.ru
				                					                																			                												                								Россия, Москва						
Список литературы
- Бутковский А.Г. Теория оптимального управления системами с распределенными параметрами. М.: Наука, 1965.
 - Lions J.L. Exact controllability, stabilization and perturbations for distributed systems // SIAM Rev. 1988. V. 30. № 1. P. 1–68. https://doi.org/10.1137/1030001
 - Черноусько Ф.Л. Ограниченные управления в системах с распределенными параметрами // ПММ. 1992. Т. 56. № 5. С. 810–826.
 - Romanov I., Shamaev A. Exact controllability of the distributed system, governed by string equation with memory // J. Dyn.&Control Syst. 2013. V. 19. № 4. P. 611–623.
 - Romanov I., Shamaev A. Noncontrollability to rest of the two-dimensional distributed system governed by the integrodifferential equation // J. Optimiz. Theory&Appl. 2016. V. 170. P. 772–782.
 - Romanov I., Shamaev A. Some problems of distributed and boundary control for systems with integral aftereffect // J. Math. Sci. 2018. V. 234. № 4. P. 470–484.
 - Романов И.В. Точное управление колебаниями двумерной мембраны ограниченным силовым воздействием, приложенным к границе // Докл. РАН. Теория управления. 2016. Т. 170. № 1. С. 22–25.
 - Romanov I., Shamaev A. Suppression of oscillations of thin plate by bounded control acting to the boundary // J. Comput.&Syst. Sci. Int. 2020. V. 59. № 3. P. 371–380. https://doi.org/10.1134/S1064230720030144
 - Romanov I., Shamaev A. Exact bounded boundary controllability to rest for the two-dimensional wave equation // J. Optimiz. Theory&Appl. 2021. V. 188. № 3. P. 925–938.
 - Ivanov S., Pandolfi L. Heat equation with memory: lack of controllability to rest // J. Math. Anal.&Appl. 2009.
 - Акуленко Л.Д. Приведение упругой системы в заданное состояние посредством силового граничного воздействия // ПММ. 2000. Т. 45. № 6. С. 1095–1103.
 - Михайлов В.П. Дифференциальные уравнения в частных производных. М.: Наука, 1976. 391 с.
 - Эйдус Д.М. Некоторые неравенства для собственных функций // Докл. АН СССР. 1956. Т. 107. № 6. С. 796–798.
 - Егоров Ю.В., Кондратьев В.А. О некоторых оценках собственных функций эллиптического оператора // Вестн. МГУ, Сер. 1. Мат. и мех. 1985. № 4. С. 32–34.
 - Понтрягин Л.С. Математическая теория оптимальных процессов. М.: Наука, 1983. 392 с.
 - Левин Б.Я. Распределение нулей целых функций. М.: ГИТТЛ, 1956. 632 с.
 - Романов И.В. Исследование управляемости для некоторых систем с распределенными параметрами, описываемых интегро-дифференциальными уравнениями // Изв. РАН. ТиСУ. 2022. № 2. С. 58–61.
 
Дополнительные файлы
				
			
						
						
						
					
						
									


