Revision of the family Tetrentactiniidae Kozur et Mostler, 1979 (radiolarians of the Late Paleozoic). Part 1. Family, subfamilies

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The family Tetrentactiniidae Kozur et Mostler, 1979, is revised and its diagnosis and generic composition are emended. The subfamily Tetrentactiniinae Kozur et Mostler, 1979, stat. nov., is revised, and its rank is emended. The new subfamily Uralitininae Afanasieva et Gainullina, subfam. nov. is established. A diagnosis of a new genus and new species Uralitina megalospina gen. et sp. nov. is given. The validus status is restored for the genus Triaenoentactinosphaera Wang, 1997.

Full Text

Restricted Access

About the authors

M. S. Afanasieva

Borissiak Paleontological Institute, Russian Academy of Sciences

Author for correspondence.
Email: afanasieva@paleo.ru
Russian Federation, Moscow, 117647

E. A. Gainullina

Borissiak Paleontological Institute, Russian Academy of Sciences; Lomonosov Moscow State University

Email: elika10@bk.ru
Russian Federation, Moscow, 117647; Moscow, 119991

References

  1. Афанасьева М.С. Ультраструктура и вторичные изменения раковин радиолярий // Палеонтол. журн. 1990. № 1. С. 28–38.
  2. Афанасьева М.С. Новый вариант систематики радиолярий палеозоя // Геология и минеральные ресурсы европейского северо-востока России: новые результаты и новые перспективы. Матер. XIII Геологического съезда Республики Коми. Сыктывкар: ИГ КНЦ УрО РАН, 1999. Т. II. С. 253–256.
  3. Афанасьева М.С. Атлас радиолярий палеозоя Русской платформы. М.: Научный Мир, 2000. 480 с.
  4. Афанасьева М.С. Новая классификация радиолярий палеозоя // Палеонтол. журн. 2002. № 2. С. 14–29.
  5. Афанасьева М.С. Скелет радиолярий: формирование и морфология оболочек скелета // Палеонтол. журн. 2006. № 5. С. 13–24.
  6. Афанасьева М.С. Скелет радиолярий: морфология игл, внутреннего каркаса и первичной внутренней сферы // Палеонтол. журн. 2007. № 1. С. 3–14.
  7. Афанасьева М.С. Атлас радиолярий девона Северной Евразии. М.: РАН, 2020. 284 с. (Тр. Палеонтол. ин-та РАН. Т. 297).
  8. Афанасьева М.С. Новый род Alexialeks gen. nov. и новые виды радиолярий ранней перми Южного Урала России // Палеонтол. журн. 2023а. № 1. С. 13–31.
  9. Афанасьева М.С. Новые виды радиолярий из нижнего карбона Волго-Уральского бассейна и верхнего карбона Южного Урала, Россия // Палеонтол. журн. 2023б. № 4. С. 3–13.
  10. Афанасьева М.С., Амон Э.О. Новая классификация радиолярий // Палеонтол. журн. 2003. № 6. С. 72–86.
  11. Афанасьева М.С., Амон Э.О. Радиолярии. М.: ПИН РАН, 2006. 320 с.
  12. Афанасьева М.С., Вишневская В.С. Возможные причины появления кремневого скелета радиолярий // Докл. Акад. наук. 1992. Т. 325. № 3. С. 590–596.
  13. Афанасьева М.С., Гайнуллина Э.А. Ревизия семейства Tetrentactiniidae Kozur et Mostler, 1979 (радиолярии позднего палеозоя). Часть 2. Новые роды и виды // Палеонтол. журн. 2025 (в печати).
  14. Международный кодекс зоологической номенклатуры. Изд. четвертое. М.: Т-во научн. изданий КМК, 2004. 223 с.
  15. Назаров Б.Б. Первые находки радиолярий Entactiniidae и Ceratoikiscidae в верхнем девоне Южного Урала // Докл. АН СССР. 1973. Т. 210. № 3. С. 696–699.
  16. Назаров Б.Б. К систематике палеозойских сфероидей // Систематика и стратиграфическое значение радиолярий. 1974. С. 35–40 (Тр. ВСЕГЕИ. Нов. сер. Т. 226).
  17. Назаров Б.Б. Радиолярии нижнего-среднего палеозоя Казахстана (методы исследований, систематика, стратиграфическое значение). М.: Наука, 1975. 202 с. (Тр. ГИН АН СССР. Вып. 275).
  18. Назаров Б.Б. Радиолярии палеозоя. Л.: Недра, 1988. 232 с. (Практическое руководство по микрофауне СССР. Справочник для палеонтологов и геологов. Т. 2).
  19. Назаров Б.Б., Ткаченко В.И., Шульгина В.С. Радиолярии и возраст кремнисто-терригенных толщ Приколымского поднятия // Изв. АН СССР. 1981. Сер. геол. № 10. С. 79–89.
  20. Петрушевская М.Г. Значение роста скелетов радиолярий для их систематики // Зоол. журн. 1962. Т. 41. Вып. 3. С. 331–341.
  21. Петрушевская М.Г. Радиолярии отряда Nassellaria Мирового океана. Л.: Наука, 1981. 406 с.
  22. Петрушевская М.Г. Радиоляриевый анализ. Л.: Наука, 1986. 200 с.
  23. Точилина С.В. Проблемы систематики Nassellaria. Биохимические особенности эволюции. Владивосток: ДВО РАН, 1997. 71 с.
  24. Afanasieva M.S. Experimental evidence for changes during fossilization of radiolarian tests and emplications for a model of biomineralizations // Mar. Micropaleontol. 1990. № 15. P. 233–248.
  25. Afanasieva M.S. Devonian radiolarian eco-zones in the Northern Eurasia // Paleontol. J. 2020. V. 54. № 9. Р. 947–1093.
  26. Afanasieva M.S. Asselian and Sakmarian (Lower Permian) radiolarian ecozones in the South Urals, Russia // Paleontol. J. 2021. V. 55. № 8. P. 825–862.
  27. Afanasieva M.S., Amon E.O. Devonian radiolarians of Russia // Paleontol. J. 2011. V. 45. № 11. P. 1313–1532.
  28. Afanasieva M.S., Amon E.O. Biomineralization of radiolarian skeletons // Paleontol. J. 2014. V. 48. № 14. P. 1481–1494.
  29. Afanasieva M.S., Amon E.O., Agarkov Yu.V., Boltovskoy D.S. Radiolarians in the geological record // Paleontol. J. 2005. V. 39. Suppl. 3. P. S135–S392.
  30. Afanasieva M.S., Kononova L.I., Zaitseva E.L., Baranova A.V. Lower Tournaisian (Lower Carboniferous) microfauna of the Volga-Ural Region, Russia // Paleontol. J. 2023. V. 57. Suppl. 1. P. S1–S30.
  31. Anderson O.R. Radiolaria // Biochemistry and Physiology of Protozoa. 1980. V. 10. № 3. P. 1–42.
  32. Anderson O.R. Radiolarian fine structure and silica deposition // Silicon and Siliceous Structures in Biological Systems. N.Y.-Heidelberg-Berlin: Springer-Verlag, 1981. P. 347–379.
  33. Anderson O.R. Radiolaria. N.Y.-Berlin-Heidelberg-Tokyo: Springer-Verlag, 1983. 450 p.
  34. Anderson O.R. Silicification in Radiolaria – deposition and ontogenetic origin of forms // Biomineralization in Lower Plants and Animals / Eds. Leadbeater B.S.C., Riding R. Oxford: Clarendon Press, 1986. P. 375–391.
  35. Braun A. Neue unterkarbonische Radiolarien-taxa aus Kieselschiefer–Gerollen des unteren Maintales bei Frankfurt a. M. // Geol. et Palaeontol. 1989. V. 23. S. 83–99.
  36. Cachon J., Cachon M. Les modalités du depot de la silice chez Radiolaires // Arch. Protistenkd. 1972. Bd 114. S. 1–13.
  37. Darwin Ch. On the Origin of Species by Means of Natural Selection, or the Preservation of Favoured Races in the Struggle for Life (1st ed.), London: John Murray, 1989. 502 p.
  38. De Wever P. Radiolaires du Trias et du Lias de la Tethys (Systématique, Stratigraphie) // Sci. Géol. du Nord. 1982. V. 7. P. 1–599.
  39. De Wever P., Azema J., Fourcade E. Radiolarians and radiolarite: Primary production, diagenesis and paleogeography // Bull. Centres Rech. Explor.-Prod. Elf-Aquitaine. 1994. V. 18. № 1. P. 315–379.
  40. De Wever P., Dumitrica P., Caulet J.P. et al. Radiolarians in the Sedimentary Record. Amsterdam: Gordon and Breach Sci. Publ., 2001. 533 p.
  41. Deflandre G. Radiolaires fossils // Traite de Zoologie V. 1. Pt. 2 / Ed. Grasse P. Paris: Masson et Cie, 1953. P. 389–436.
  42. Deflandre G. Sur le sens du developpment, centrifuge ou centripete, des elements de la coque des Radiolaires Sphaerellaires // C. r. Acad. sci. 1964. V. 259. № 13. P. 2117–2119.
  43. Deflandre G. Observations et remarques sur les Radiolaires Sphaerellaires du Paléozoïque, à propos d’une nouvelle espece, viséenne, du genre Foremaniella Defl., parfait intermediaire entre les Périaxoplastidiés et les Pylentonémidés // C.r. Acad. sci. Sér. D, Sci. natur. 1973. T. 276. № 1. P. 1147–1151.
  44. Dumitrica P. On the status of the Permian radiolarian genus Multisphaera Nazarov and Afanasieva, 2000 // Rev. micropaléontol. 2011. V. 54. P. 207–213.
  45. Ehrenberg Ch.G. Über die Bildung der Kreidefelsen und des Kreidemergels durch unsichtbare Organismen // Abh. Preuss. Berliner Akad. Wiss. Berlin, 1838. S. 59–147.
  46. Enriques P. Saggio di una classificazione dei Radiolari // Arch. zool. Torino. 1932. V. 6. P. 69–78.
  47. Feng Q., Gu S., He W., Jin Y. Latest Permian Entactinaria (Radiolaria) from southern Guangxi, China // J. Micro-palaeontol. 2007. V. 26. № 1. P. 19–37.
  48. Foreman H.P. Upper Devonian Radiolaria from the Huron Member of the Ohio Shale // Micropaleontol. 1963. V. 9. № 3. P. 267–304.
  49. Francois F. Deep sea biogenic silica: new structural and analytical data from infra-red analysis geological implications // Terra Nova. 1989. V. 1. № 3. P. 267–273.
  50. Gainullina E.A., Alekseev A.S. New records of Lower Artinskian radiolarians and conodonts from the Village of Donskoe (Orenburg Region, South Urals) // Paleontol. J. 2024. V. 58. № 9. P. 1025–1036.
  51. Gourmelon F. Étude des radiolaires d’un nodule phosphaté du Carbonifère inferieur de Bareilles, Hautes-Pyrenees, France // Geobios. 1986. № 19. Fasc.2. P. 179–205.
  52. Gourmelon F. Les Radiolaires tournaisiens des nodules phosphatés de la Montagne Noire et des Pyrénées centrales // Biostratigraphie du Paléozoïque. 1987. V. 6. P. 1–172.
  53. Häcker V. Tiefsee-Radiolarien // Wiss. Ergeb. Deutsch. Tiefsee-Exped. Dampfer "Valdivia" 1898-1899. Bd 14. Jena, 1908. 706 s.
  54. Haeckel E. Entwurf eines Radiolariaen–System auf Grund von Studien der Challengen–Radiolarien // Jenaische Z. Naturwiss. 1881. Bd 15. S. 418–472.
  55. Haeckel E. Die Geometrie der Radiolarien // Sitz.-ber. Med.-Natur. Ges. Jena. 1884. Bd 17. S. 104–108.
  56. Haeckel E. Report on the Radiolaria collected by H.M.S. “Challenger” during the years 1873–1876 // Rept. Sci. Results Voy. “Challenger”. Zool. Edinburg, 1887. V. 18. Pt. 1–2. 1803 p.
  57. Hinde G.J. On the Radiolaria in the Devonian Rocks of New South Wales // Quart. J. Geol. Soc. London. 1899. V. 55. P. 38–64.
  58. Holdsworth B.K. Paleozoic Radiolaria: stratigraphic distribution in Atlantic Borderlands // Stratigraphic Micropaleontology of Atlantic Basin and Borderlands. Amsterdam: Elsevier Pub. Co., 1977. P. 167–184.
  59. Hollande A., Enjumet M. Cytologie, evolution et systematique des Sphaeroides (Radiolaires) // Arch. Muséum Natur. Hist. Paris. Ser. 7. 1960. V. 7. P. 1–134.
  60. Hori N. Paleozoic and Mesozoic radiolarians from the Chichibu Belt in the Iragomisaki district, Atsumi Peninsula, Aichi Prefecture, Southwest Japan // Bull. Geol. Surv. Japan. 2005. V. 56. № 1/2. P. 37–83.
  61. Kiessling W., Tragelehn H. Devonian radiolarian faunas of conodont–dated localities in the Frankenwald (northern Bavaria, Germany) // Abh. Geol. B.–A. 1994. Bd 50. P. 219–255.
  62. Kozur H., Mostler H. Beiträge zur Erforschung der mesozoischen Radiolarien. Teil III: Die Oberfamilien Actinommacea Haeckel, 1862 emend., Artiscacea Haeckel, 1882, Multiarcusellacea nov. der Spumellaria und triassische Nassellaria // Geol. Paläontol. Mitt. Innsbruck. 1979. Bd 9. S. 1–132.
  63. Kozur H., Mostler H. Radiolarien und Schwammskleren aus dem Unterperm des Vorurals // Geol. Paläontol. Mitt. Innsbruck. 1989. SonderBd 2. S. 147–275.
  64. Kuwahara K., Yao A. Diversity of Late Permian radiolarian assemblages // Proceedings of the Sixth Radiolarian Symposium / Ed. Matsuoka A. News of Osaka Micropaleontologists. 1998. Spec. vol. 11. P. 33–46.
  65. Kuwahara K., Yao A. Late Permian radiolarian faunal change in bedded chert of the Mino Belt, Japan // News of Osaka Micropaleontologists. 2001. Spec. vol. 12. P. 33–49.
  66. Maggenti A.R. Genus and family: concepts and natural groupings // Revue Nématol. 1989. V. 12. № 1. P. 3–6.
  67. Maldonado A.L., Noble P.J. Radiolarians from the upper Guadalupian (Middle Permian) Reef Trail Member of the Bell Canyon Formation, West Texas and their biostratigraphic implications // Micropaleontology. 2010. V. 56. № 1–2. P. 69–115.
  68. Maletz J. Tetrentactinia barysphaera Foreman, 1963: skeletal structure and age of a biostratigraphically important Famennian (Upper Devonian) radiolarian from the Ohio Shale, USA // Paläontol. Z. 2011. V. 85. № 4. P. 383–392.
  69. Maletz J., Bruton D.L. Lower Ordovician (Chewtonian to Castlemainian) radiolarians of Spitsbergen // J. Syst. Palaeontol. 2007. V. 5. № 3. P. 245–288.
  70. Müller J. Über die Thalassicollen, Polycystinen und Acanthometren des Mittelmeeres // Abh. Kgl. Preuss. Akad. Wiss. Berlin, 1858. S. 1–62.
  71. Nazarov B.B., Ormiston A.R. Radiolarians from Late Paleozoic of the Southern Urals, USSR, and West Texas, USA // Micropaleontology. 1985. V. 30. № 1. P. 1–54.
  72. Nestell G.P., Nestell M.K. Late Capitanian (latest Guadalupian, Middle Permian) radiolarians from the Apache Mountains, West Texas // Micropaleontology, 2010. V. 56. № 1–2. P. 7–68.
  73. Nestell G.P., Nestell M.K. Roadian (earliest Guadalupian, Middle Permian) Radiolarians from the Guadalupe Mountains, West Texas, USA. Part I: Albaillellaria and Entactinaria // Micropaleontology. 2020. V. 66. № 1. P. 1–50.
  74. Nestell G.P., Nestell M.K. Roadian (Earliest Guadalupian, Middle Permian) radiolarians from the Guadalupe Mountains, West Texas, USA. Part II: spongy radiolarians (Entactinaria? and Spumellaria) // Micropaleontology. 2021. V. 67. № 6. P. 527–555.
  75. Noble P., Aitchison J.C., Danelian T. et al. Taxonomy of Paleozoic radiolarian genera // Catalogue of Paleozoic radiolarian genera / Eds. Danelian T., Caridroit M., Noble P., Aitchison J.C. Geodiversitas. 2017. V. 39. № 3. P. 419–502.
  76. Ormiston A.R., Lane H.R. A unique radiolarian fauna from the Sycamore Limestone (Mississippian) and its biostratigraphic significance // Palaeontogr. Abt. A. 1976. Bd 154. Lfg. 4–6. P. 158–180.
  77. Park I.-Y., Won M.-Z. Tropical radiolarian assemblages from the Lower Carboniferous Delle Phosphatic Member of the Woodman Formation of Utah, USA // J. Paleontol. Soc. Korea. 2012. V. 28. № 1–2. P. 29–101.
  78. Popofsky A. Die Nasselarien des Warmwassergebietes // Dtsch. Südpolar-Expedition 1901–1903. Berlin, 1913. Bd 14. Zoologie, Bd 6. H. 2. S. 217–416.
  79. Riedel W.R. Some new families of Radiolaria // Proc. Geol. Soc. London. 1967. № 1640. P. 148–149.
  80. Sano H., Kuwahar K., Ya A., Agematsu S. Panthalassan seamount-associated Permian–Triassic boundary siliceous rocks, Mino terrane, central Japan // Paleontol. Res. 2010. V. 14. № 4. P. 293–314.
  81. Sashida K., Salyapongse S., Nakornsri N. Latest Permian radiolarian fauna from Klaeng, eastern Thailand // Micropaleontology. 2000. V. 46. № 3. P. 245–263.
  82. Sashida K., Tonishi K. Permian radiolarians from the Kanto Mountains, central Japan; some Upper Permian Spumellaria from Itsukaichi, western part of Tokyo Prefecture // Sci. Reports of the Inst. of Geosci., Univ. Tsukuba. Sect. B: Geol. Sci. 1985. V. 6. P. 1–19.
  83. Sashida K., Tonishi K. Additional note on Upper Permian radiolarian fauna from Itsukaichi, western part of Tokyo Prefecture, central Japan // Trans. and Proc. of the Palaeontol. Soc. Japan. New Ser. 1988. V. 151. P. 523–542.
  84. Schwartzapfel J.A., Holdsworth B.K. Upper Devonian and Mississippian Radiolarian Zonation and Biostratigraphy of the Woodford, Sycamore, Caney and Goddard formations, Oklahoma // Cushman Foundation for Foraminiferal Research. 1996. Spec. Publ. № 33. P. 1–275.
  85. Tumanda F.P. Radiolarian biostratigraphy in central Busuanga Island, Palawan, Philippines // J. Geol. Soc. Philippines. 1991. V. 46. № 1–2. P. 49–104.
  86. Tumanda F.P. Permian Radiolaria from Busuanga Island, Palawan, Philippines // J. Geol. Soc. Philippines. 1994. V. 49. № 3. P. 119–193.
  87. Tumanda F.P., Sato T., Sashida K. Preliminary Late Permian radiolarian biostratigraphy of Busuanga Island, Palawan, Philippines // Ann. Rep. Inst. of Geosci., Univ. Tsukuba. 1990. V. 16. P. 39–45.
  88. Wang Y.-J. An Upper Devonian (Famennian) radiolarian fauna from carbonate rocks, northern Xinjiang // Acta Micropalaeontol. Sin. 1997. V. 14. № 2. P. 149–160.
  89. Won M.-Z. Review of family Entactiniidae (Radiolaria), taxonomy and morphology of Entactiniidae in the late Devonian (Frasnian) Gogo formation, Australia // Micropaleontology. 1997a. V. 43. № 4. P. 333–369.
  90. Won M.-Z. The proposed new radiolarian subfamily Retentactiinae (Entactiniidae) from the Late Devonian (Frasnian) Gogo formation, Australia // Micropaleontology. 1997b. V. 43. № 4. P. 371–418.
  91. Won M.-Z. Radiolarien aus dem Unterkarbon des Rheinischen Schiefergebirges (Deutschland) // Palaeontogr. Abt. A. 1983. Bd 182. Lfg. 4–6. S. 116–175.
  92. Won M.-Z. A Tournaisian (Lower Carboniferous) radiolarian zonation and radiolarians of the A. pseudoparadoxa Zone from Oese (Rheinische Schiefergebirge), Germany // J. Korean Earth Sci. Soc. 1998. V. 19. № 2. P. 216–259.
  93. Won M.-Z., Seo E.-H. Lower Carboniferous radiolarian biozones and faunas from Bergishes land, Germany // J. Palaeontol. Soc. Korea. 2010. V. 26. № 2. P. 193–269.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Family Tetrentactiniidae Kozur et Mostler, 1979, sensu Dumitrica, 2011: a – Tetrentactinia barysphaera Foreman, 1963, Upper Devonian, Famennian Stage, Huron Formation, Ohio, USA (Foreman, 1963, p. 282, pl. 7, fig. 9); b – Triaenosphaera sicarius Deflandre, 1973, Lower Carboniferous, Visean Stage, Montaigne Noire Mountains, France (Deflandre, 1973, p. 1150, pl. 2, fig. 3); c – Tetraspongoactinia holdsworthi Won, 1998, Lower Carboniferous, upper Tournaisian substage, Rhenish Slate Mountains, Germany (Won, 1998, p. 257, pl. 4, fig. 10); d – Multisphaera impersepta Nazarov et Afanasieva in Afanasieva, 2000, Lower Permian, Artinskian stage, Ural River, Donskoye village, Southern Urals, Russia (Afanasyeva, 2000, pl. 81, fig. 7); d – Tetratormentum narthecium Nazarov et Ormiston, 1985, Lower Permian, Artinskian stage, Ural River, Donskoye village, Southern Urals, Russia (Nazarov, Ormiston, 1985, p. 42, pl. 5, fig. 8); e – Tetragregnon sycamorensis Ormiston et Lane, 1976, Lower Carboniferous, Visean Stage, Sycmore Formation, Arbuckle Mountains, Oklahoma, USA (Ormiston, Lane, 1976, p. 167, pl. 2, fig. 6); f – Ellipsostigma australe Hinde, 1899, Middle Devonian, Givetian Stage, Yarrimi Formation, New South Wales, Australia (Hinde, 1899, p. 51, pl. 9, fig. 5); h – Staurentactinia nazarovi Schwartzapfel et Holdsworth, 1996, Upper Devonian, Upper Famennian, Woodford Formation, Criner Hills and Arbuckle Mountains, Oklahoma, USA (Schwartzapfel, Holdsworth, 1996, p. 202, pl. 9, fig. 8). Scale bar: a, g–f, h – 100 µm; b, c, g – 50 µm.

Download (493KB)
3. Fig. 2. Possible variant of formation of the spicule and main needles: a – silicon-oxygen tetrahedron [SiO4], silicon atom is highlighted in black (from: Afanasieva et al., 2005, Fig. 3, a); b – hypothetical four-beam spicule (after: Popofsky, 1913, Fig. 1); c – empirical model of formation of the main needles (needles are shown with arrows, from: Afanasieva et al., 2005, Fig. 11, B).

Download (46KB)
4. Fig. 3. Four-rayed spicule: a–g – Longibelona spiroacus (Afanasieva, 2023), preserved fragments of spicule rays (from: Afanasieva, 2023b, Fig. 6, a, b, d, f); d–g – Longibelona alia Afanasieva et Gainullina, gen. et sp. nov. (MS): d – fragment of spicule ray (from: Afanasieva, 2023b, pl. II, fig. 1), f, g – spicule ray with preserved bases of three more rays; h – Triaenosphaera fortunatovae Afanasieva, 2023, preserved two rays of the spicule, on one of which the bases of two more rays are visible (from: Afanasieva, 2023b, pl. II, fig. 3); i, k – Longibelona neglecta Afanasieva et Gainullina, gen. et sp. nov. (MS), fragment of a spicule ray. Designations: arrows indicate the preserved rays of the four-ray spicule (a, d, i, k) and the rays of the spicule with the preserved bases of three more rays of the four-ray spicule (g, f–h). Scale bar: g – 10 µm; a – 20 µm; g, j – 30 µm; c, d, f, h – 50 µm; b, i – 100 µm.

Download (841KB)
5. Fig. 4. Microsphere in representatives of the subfamily Uralitininae, subfam. nov.: a, b – Triaenoentactinosphaera, microsphere and primary rod-shaped spines: a – T. sicarius (Deflandre, 1973 sensu Won, 1998) (restored from: Won, 1998, pl. 7, fig. 15); b – T. regularia Wang, 1997 (restored from: Wang, 1997, pl. 4, fig. 8); c–d – Kashiwara magna Sashida et Tonishi, 1985, microsphere and trilobed primary needles: c, d – porous outer and inner shells of the microsphere (restored from: Feng et al., 2007, pl. 6, figs. 17, 18); d – porous outer shell of the microsphere (restored from: Sashida, Tonishi, 1985, pl. 5, fig. 7); e, g – Kashiwara roadensis Nestell et Nestell, 2020, complex structure of the microsphere with a porous outer and mesh-like inner shell (adapted with modifications from: Nestell, Nestell, 2020, pl. 8, figs. 7a and 7b): e – arrow points to the three-lobed primary spine, g – fragment showing the double shell of the microsphere with fragments of the spicule rays (shown by small arrows), the large arrow points to the rod-shaped primary spine; h, i – Uralitina megalospina Afanasieva et Gainullina, gen. et sp. nov., specimen PIN, no. 0729: h – general view, i – fragment, arrows point to the primary rod-shaped spine and part of the spicule ray enclosed in the microsphere. Scale bar: a–c, d, f, h – 100 µm, g, f – 50 µm, i – 30 µm.

Download (711KB)
6. Fig. 5. Examples of the structure of the skeletal shells of Tetrenta-ctiniidae Kozur et Mostler, 1979, rev. et emend., herein: a – one porous skeletal shell with spines, Longivelona neglecta Afanasieva et Gainullina, sp. nov, specimen PIN, No. 0209; b – two layers: porous → fine-mesh veil, Uralitina megalospina Afanasieva et Gai-nullina, gen. et sp. nov., the arrow shows the supporting spines of the porous skeletal shell; c – three layers: porous → mesh → fine-mesh veil, Longibelona globosa Afanasieva et Gainullina, gen. et sp. nov. (MS). Scale bar 30 µm.

Download (456KB)
7. Fig. 6. Scheme of formation of the main needles: a – microsphere and primary spicule, b – primary needle, c – fragment of the outer sphere and large pores at the base of the main needle, d – main three-lobed needle.

Download (55KB)
8. Fig. 7. The shape of the needles in representatives of the family Tetrentactiniidae Kozur et Mostler, 1979, rev. et emend., herein: a – needles covered with spongy skeletal tissue: Tetrentactinia barysphaera Foreman, 1963 (from: Afanaseva, 2000, pl. 84, fig. 5); b–d – three-lobed needles with subtriangular edges: b – Kashiwara magna Sashida et Tonishi, 1985 (restored from: Sashida, Tonishi, 1985, pl. 5, fig. 6), c – Uralitina megalospina Afanasieva et Gainullina, gen. et sp. nov., holotype PIN, no. 1108, g – Triaenosphaera fortunatovae Afanasieva, 2023 (from: Afanaseva, 2023b, pl. II, fig. 9); d–g – three-lobed needles with subrectangular needle edges, i.e. practically the same width of needles almost along their entire length: d – Longibelona neglecta Afanasieva et Gainullina, gen. et sp. nov. (MS) demonstrates spines on a porous sphere (from: Afanaseva, 2023b, pl. II, fig. 4), e – Longibelona globosa Afanasieva et Gainullina, gen. et sp. nov. (MS), the reticular layer and large pores at the base of the needle are clearly visible (shown by the arrow), g – Longibelona megacantha (Feng in Feng et al., 2007) (restored from: Feng et al., 2007, pl. 4, fig. 15); h–j – three-lobed twisted needles: h, i – Longibelona spiroacus (Afanasieva, 2023) (from: Afanasieva, 2023b, fig. 6, a, c), k – Tetraedrella tetraedros Afanasieva et Gainullina, gen. et sp. nov. (MS). Scale bar 100 µm.

Download (905KB)
9. Fig. 8. Reconstruction of the distribution of genera of the family Tetrentactiniidae Kozur et Mostler, 1979, rev. et emend., herein. Genera and species: Tetrentactinia barysphaera Foreman, 1963, Russia, Timan-Pechora Basin (Afanasyeva, 2000, pl. 84, fig. 5); Triaenosphaera sicarius Deflandre, 1973, Germany, Northern Bavaria, Frankenwald (Kiessling, Tragelehn, 1994, pl. 5, fig. 21); Longibelona globosa Afanasieva et Gainullina, gen. et sp. nov. (MS); Tetraedrella tetraedros Afanasieva et Gainullina, gen. et sp. nov. (MS); Triaenoentactinosphaera regularia Wang, 1997 (Wang, 1997, pl. 4, fig. 8); Kashiwara magna Sashida et Tonishi, 1985 (Sashida, Tonishi, 1985, pl. 5, fig. 6); Uralitina megalospina gen. et sp. nov. Distribution of genera. Upper Devonian: Frasnian, Kazakhstan, Mugodzhary (Nazarov, 1973); Famennian: Russia, Kolymskoe Uplift (Nazarov et al., 1981), Timan-Pechora Basin, Polar Urals (Afanasyeva, 2000, 2020; Afanasieva, Amon, 2011; Afanasieva, 2020); Belarus, Pripyat Trough (Nazarov, 1988; Afanasieva, 2020; Afanasieva, 2020); USA, Ohio (Foreman, 1963; Maletz, 2011); Germany, Frankenwald (Kiessling, Tragelehn, 1994); northwestern China, Xinjiang Province (Wang, 1997). Lower Carboniferous: Tournaisian: Germany, Rhenish Slate Mountains (Braun, 1989; Won, 1998); France, Hautes-Pyrenees (Gourmelon, 1986), Montaigne-Noire Mountains (Gourmelon, 1987); USA, Utah, South Lakeside Mountains (Park, Won 2012); lower Tournaisian, Russia, Volga-Ural Basin, well. Melekesskaya-1 (Afanasieva, 2023b; Afanasieva et al., 2023); Visean: France, Montaigne-Noire Mountains (Deflandre, 1973); Germany, Rhenish Slate Mountains (Won, 1983); Northern Westphalia (Won, Seo, 2010). Lower Permian, Russia, Southern Urals: Asselian and Sakmarian stages, Sakmara River, Kondurovsky section (Afanasieva, 2021); Artinskian stage, Ural River, Donskoye village (this work). Middle Permian, Roadian and Capitanian stages, USA, Texas, Guadalupe Mountains (Maldonado, Noble, 2010; Nestell, Nestell, 2020). Upper Permian, Japan (Kuwahara, Yao, 1998, 2001; Hori, 2005; Sano et al., 2010); Philippines, central Busuanga Island (Tumanda, 1991, 1994; Tumanda et al., 1990); Upper Permian, Changsingian: central and southwestern Japan (Sashida, Tonishi, 1985, 1988; Feng et al., 2007); Eastern Thailand, Klaeng (Sashida et al., 2000); Southern China, Guangxi Province (Feng et al., 2007). Stage designations: fr – Frasnian, fm – Famennian, t – Tournaisian, v – Visean, s – Serpukhovian, b – Bashkir, ms – Moscow, ks – Kasimovian, gz – Gzhelian, as – Asselian, sk – Sakmarian, ar – Artinskian, kn – Kungurian, rod – Roadian, wor – Wordian, cap – Captainian, wch – Uchapingian, chn – Changhsingian. Scale bar 100 µm.

Download (365KB)
10. Symbol

Download (1KB)

Copyright (c) 2025 Russian Academy of Sciences