Knockout mutations in the genes encoding phosphate transporters impair adaptation of Saccharomyces cerevisiae to ethanol consumption

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Phosphate transporters in yeast cells are responsible for phosphorus homeostasis, and also indirectly involved in the regulation of various adaptive processes. One of these processes is the adaptation to ethanol consumption, which requires significant changes in phosphorus metabolism. We demonstrated that knockout mutations in the genes encoding phosphate transporters PHO87, PHO89, PHO90 and PHO91 impair adaptation of Saccharomyces cerevisiae to ethanol consumption at ethanol concentration of 4%. For these mutant strains an extension of the lag phase and in a decrease in the growth rate at the active stage was observed when the cells were cultivated in the medium with 4% ethanol. Mutant cells differ in the content of inorganic polyphosphates, but not orthophosphate, from the parental strain: they contain less long-chain polyphosphates when cultivated on ethanol, but not on glucose. When cultivated on a medium containing 4% ethanol, a strain with a knockout mutation in the PHO84 gene, encoding the transporter of phosphate and divalent metals, as well as knockout strains for the PHM6 and PHM7 genes, responsible for the polyphosphate overplus, did not show any growth differences compared with parent strain in a medium with 4% ethanol. The possible role of phosphate transporters and inorganic polyphosphates in the adaptation of yeast to ethanol consumption is discussed.

Texto integral

Acesso é fechado

Sobre autores

L. Ledova

Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”

Autor responsável pela correspondência
Email: alla@ibpm.ru

Skryabin Institute of Biochemistry and Physiology of Microorganisms

Rússia, 142290, Pushchino

L. Ryazanova

Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”

Email: alla@ibpm.ru

Skryabin Institute of Biochemistry and Physiology of Microorganisms

Rússia, 142290, Pushchino

T. Kulakovskaya

Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”

Email: alla@ibpm.ru

Skryabin Institute of Biochemistry and Physiology of Microorganisms

Rússia, 142290, Pushchino

Bibliografia

  1. Андреева Н. А., Кулаковская Т. В., Кулаковская Е. В., Кулаев И. С. Полифосфаты и экзополифосфатазы в цитозоле и митохондриях Saccharomyces cerevisiae при культивировании на глюкозе и этаноле в условиях гиперкомпенсации по фосфату // Биохимия. 2008. Т. 73. С. 80‒85.
  2. Andreeva N. A., Kulakovskaya T. V., Kulakovskaya E. V., Kulaev I. S. Polyphosphates and exopolyphosphatases in cytosol and mitochondria of Saccharomyces cerevisiae during growth on glucose or ethanol under phosphate surplus // Biochemistry (Moscow). 2008. V. 73. P. 65‒69.
  3. Вагабов В. М., Трилисенко Л. В., Кочеткова О. Ю., Ильченко А. П., Кулаев И. С. Влияние m-хлоркабонилцианидфенилгидразона на синтез неорганических полифосфатов Saccharomyces cerevisiae в разных условиях роста // Микробиология. 2011. Т. 80. С. 18‒23.
  4. Vagabov V. M., Trilisenko L. V., Kochetkova O. Y., Ilchenko A. P., Kulaev I. S. Effect of m-carbonyl cyanide 3-chlorophenylhydrazone on inorganic polyphosphates synthesis in Saccharomyces cerevisiae under different growth conditions // Microbiology (Moscow). 2011. V. 80. P. 15–20.
  5. Розанов А. С., Котенко А. В., Акбердин И. Р., Пельтек С. Е. Рекомбинантные штаммы Saccharomyces cerevisiae для получения этанола из растительной биомассы // Вавиловский журнал генетики и селекции. 2014. Т. 18. С. 989‒998.
  6. Трилисенко Л. В., Валиахметов А. Я., Кулаковская Т. В. Физиологические особенности Saccharomyces cerevisiae при сверхэкспрессии полифосфатазы Pрх1 // Микробиология. 2023. Т. 92. С. 396–403.
  7. Trilisenko L. V., Valiakhmetov A.Ya., Kulakovskaya T. V. Physiological characteristics of Saccharomyces cerevisiae strain overexpressing polyphosphatase Ppx1 // Microbiology (Moscow). 2023. V. 92. P. 545‒551.
  8. Эльдаров М. А., Кишковская С. А., Танащук Т. Н., Марданов А. В. Геномика и биохимия винных штаммов дрожжей Saccharomyces cerevisiae // Успехи биологической химии. 2016. Т. 56. С. 155–196.
  9. Andreeva N., Ledova L., Ryazanova L., Tomashevsky A., Kulakovskaya T., Eldarov M. Ppn2 endopolyphosphatase overexpressed in Saccharomyces cerevisiae: comparison with Ppn1, Ppx1, and Ddp1 polyphosphatases // Biochimie. 2019. V. 163. P. 101‒107.
  10. Andreeva N., Ryazanova L., Ledova L., Trilisenko L., Kulakovskaya T. Stress resistance of Saccharomyces cerevisiae strains overexpressing yeast polyphosphatases // Stresses. 2022. V. 2. P. 17–25.
  11. Auesukaree C. Molecular mechanisms of the yeast adaptive response and tolerance to stresses encountered during ethanol fermentation // J. Biosci. Bioeng. 2017. V. 124. P. 133–142.
  12. Bubis J. A., Spasskaya D. S., Gorshkov V. A., Kjeldsen F., Kofanova A. M., Lekanov D. S., Gorshkov M. V., Karpov V. L., Tarasova I. A., Karpov D. S. Rpn4 and proteasome-mediated yeast resistance to ethanol includes regulation of autophagy // Appl. Microbiol. Biotechnol. 2020. V. 104. P. 4027‒4041.
  13. Denoncourt A., Downey M. Model systems for studying polyphosphate biology: a focus on microorganisms // Curr. Genet. 2021. V. 67. P. 331–346.
  14. Eskes E., Deprez M. A., Wilms T., Winderickx J. pH homeostasis in yeast; the phosphate perspective // Curr. Genet. 2018. V. 64. P. 155‒161.
  15. Ghillebert R., Swinnen E., De Snijder P., Smets B., Winderickx J. Differential roles for the low-affinity phosphate transporters Pho87 and Pho90 in Saccharomyces cerevisiae // Biochem. J. 2011. V. 434. P. 243‒251.
  16. Kulakovskaya E., Zvonarev A., Kulakovskaya T. PHM6 and PHM7 genes are essential for phosphate surplus in the cells of Saccharomyces cerevisiae // Arch. Microbiol. 2023. V. 205. Art. 47.
  17. Ma M., Liu Z. L. Mechanisms of ethanol tolerance in Saccharomyces cerevisiae // Appl. Microbiol. Biotechnol. 2010. V. 87. P. 829‒845.
  18. Rao N. N., Gómez-García M.R., Kornberg A. Inorganic polyphosphate: essential for growth and survival // Annu. Rev. Biochem. 2009. V. 78. P. 605–647.
  19. Sahana G. R., Balasubramanian B., Joseph K. S., Pappuswamy M., Liu W.-C., Meyyazhagan A., Kamyab H., Chelliapan S., Biljo V. J. A review on ethanol tolerance mechanisms in yeast: current knowledge in biotechnological applications and future directions // Process Biochemistry. 2024. V. 138. P. 1‒13.
  20. Stanley D., Bandara A., Fraser S., Chambers P. J., Stanley G. A. The ethanol stress response and ethanol tolerance of Saccharomyces cerevisiae // J. Appl. Microbiol. 2010. V. 109. P. 13‒24.
  21. Vagabov V. M., Trilisenko L. V., Kulakovskaya T. V., Kulaev I. S. Effect of a carbon source on polyphosphate accumulation in Saccharomyces cerevisiae // FEMS Yeast Res. 2008. V. 8. P. 877‒882.
  22. Wolf I. R., Marques L. F., de Almeida L. F., Lázari L. C., de Moraes L. N., Cardoso L. H., Alves C. C.d.O., Nakajima R. T., Schnepper A. P., Golim M.d.A., et al. Integrative analysis of the ethanol tolerance of Saccharomyces cerevisiae // Int. J. Mol. Sci. 2023. V. 24. Art. 5646.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Growth of strain BY4741 (wt) on YP media with 1% ethanol (1), 4% ethanol (2) and 7% ethanol (3).

Baixar (17KB)
3. Fig. 2. Growth of strain BY4741 (wt) and knockout mutant strains for phosphate transporter genes on YP medium with 4% ethanol: 1 – wt; 2 – Δpho87; 3 – Δpho90; 4 – Δpho91; 5 – Δpho89.

Baixar (19KB)
4. Fig. 3. Phosphate concentration in the medium before cultivation (A) and after cultivation of S. cerevisiae strains in YPD medium with 2% glucose (B) and YP with 4% ethanol (B): 1 – wt strain; 2 – Δpho87 strain. Statistical significance was assessed relative to the data for the wt strain using Student’s t-test, using the standard Excel program: B – p < 0.01; A and B – the difference is statistically insignificant.

Baixar (10KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024