Analysis of crystal structure of epitaxial nanoheterostructures with multiple pseudomorphic quantum wells {InхGa1–хAs/GaAs} on GaAs (100), (110) AND (111) )А substrates
- Авторлар: Klimov Е.А.1,2, Klochkov A.N.3, Pushkarev S.S.1
-
Мекемелер:
- National Research Centre “Kurchatov Institute”
- Orion R&P Association, JSC
- National Research Nuclear University “MEPhI”
- Шығарылым: Том 70, № 1 (2025)
- Беттер: 133-140
- Бөлім: CRYSTAL GROWTH
- URL: https://kazanmedjournal.ru/0023-4761/article/view/686189
- DOI: https://doi.org/10.31857/S0023476125010184
- EDN: https://elibrary.ru/IRMOQG
- ID: 686189
Дәйексөз келтіру
Аннотация
The crystal structure of {In0.1Ga0.9As/GaAs} × 10 and {In0.2Ga0.8As/GaAs} × 10 epitaxial multilayer films on GaAs substrates with different orientations has been studied (100), (110), (111)A in order to identify features that may be related to the previously discovered increased efficiency of terahertz radiation generation in films with orientations (110) and (111)A. Significant concentrations of twins and package defects were found in films on non-standard GaAs (110) and (111)A substrates. The composition and thicknesses of individual layers of heterostructures on GaAs (100) substrates have been refined by analyzing thickness fluctuations on diffraction reflection curves.
Толық мәтін

Авторлар туралы
Е. Klimov
National Research Centre “Kurchatov Institute”; Orion R&P Association, JSC
Хат алмасуға жауапты Автор.
Email: s_s_e_r_p@mail.ru
Ресей, Moscow; Moscow
A. Klochkov
National Research Nuclear University “MEPhI”
Email: s_s_e_r_p@mail.ru
Ресей, Moscow
S. Pushkarev
National Research Centre “Kurchatov Institute”
Email: s_s_e_r_p@mail.ru
Ресей, Moscow
Әдебиет тізімі
- Naftaly M., Vieweg N., Deninger A. // Sensors. 2019. V. 19. P. 4203. https://doi.org/ 10.3390/s19194203
- Consolino L., Bartalini S., De Natale P. // J. Infrared Millim. Terahertz Waves. 2017. V. 38. P. 1289.
- Hafez H.A., Chai X., Ibrahim A. et al. // J. Opt. 2016. V. 18. P. 093004. https://doi.org/10.1088/2040-8978/18/9/093004
- Dhillon S.S., Vitiello M.S., Linfield E.H. et al. // J. Phys. D. 2017. V. 50. P. 043001. https://doi.org/10.1088/1361-6463/50/4/043001
- Krotkus A. // J. Phys. D. 2010. V. 43. P. 273001. https://doi.org/10.1088/0022-3727/43/27/273001
- Burford N.M., El-Shenawee M.O. // Opt. Eng. 2017. V. 56. P. 010901. https://doi.org/10.1117/1.OE.56.1.010901
- Apostolopoulos V., Barnes M.E. // J. Phys. D. 2014. V. 47. P. 374002. https://doi.org/10.1088/0022-3727/47/37/374002
- Castro-Camus E., Alfaro M. // Photon. Res. 2016. V. 4. P. A36. https://doi.org/10.1364/PRJ.4.000A36
- Ilg M., Ploog K.H., Trampert A. // Phys. Rev. B. 1994. V. 50. № 23. P. 17111. https://doi.org/10.1103/PhysRevB.50.17111
- Климов Е.А., Клочков А.Н., Солянкин П.М. и др. // Квантовая электроника. 2024. Т. 54. № 1. С. 43.
- Шик А.Я. Сверхрешетка // Большая российская энциклопедия: научно-образовательный портал. https://bigenc.ru/c/sverkhreshiotka-a2f3e5/?v=5490666
- Yerino Christopher D., Liang Baolai, Huffaker Diana L. et al. // J. Vac. Sci. Technol. B. 2017. V. 35. P. 010801. https://doi.org/10.1116/1.4972049
- Климов Е.А., Пушкарев С.С., Клочков А.Н. и др. // Микроэлектроника. 2023. Т. 52. № 3. С. 167. https://doi.org/10.31857/S054412692370031X
- Климов Е.А., Пушкарев С.С., Клочков А.Н. // Нано- и микросистемная техника. 2022. Т. 24. № 6. С. 283. https://doi.org/10.17587/nmst.24.283-287
Қосымша файлдар
