Light-emitting AlGaAs/GaAs diodes based on ingaas strain-compensated quantum wells with minimized internal losses OF 940 nm radiation absorption

Cover Page

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

IR light-emitting diodes based on InGaAs/AlGaAs multiple quantum wells and AlxGa1–xAsyP1–y-layers that compensate stresses in the active region have been developed. The optical losses caused by absorption of radiation generated by the active region (λ = 940 nm) were studied at different doping levels of n-GaAs substrates. It has been shown that reducing the donor doping level from 4 × 1018 to 5 × × 1017 cm–3 gives an increase in the quantum efficiency of LEDs by ~ 30%. A technology that eliminates optical losses caused by absorption during radiation output has been developed. By removing the growth substrate and transferring the device structure to a carrier substrate with the formation of a rear metal reflector, LEDs were created that demonstrate a twofold increase in external quantum efficiency and efficiency (~ 40%) compared to the technology of outputting radiation through an n-GaAs substrate.

Full Text

Restricted Access

About the authors

R. А. Salii

Ioffe Institute

Author for correspondence.
Email: r.saliy@mail.ioffe.ru
Russian Federation, St. Petersburg

A. V. Malevskaya

Ioffe Institute

Email: r.saliy@mail.ioffe.ru
Russian Federation, St. Petersburg

D. А. Malevskii

Ioffe Institute

Email: r.saliy@mail.ioffe.ru
Russian Federation, St. Petersburg

S. А. Mintairov

Ioffe Institute

Email: r.saliy@mail.ioffe.ru
Russian Federation, St. Petersburg

A. M. Nadtochiy

Ioffe Institute

Email: r.saliy@mail.ioffe.ru
Russian Federation, St. Petersburg

N. A. Kalyuzhnyy

Ioffe Institute

Email: r.saliy@mail.ioffe.ru
Russian Federation, St. Petersburg

References

  1. Vasilopoulou M., Fakharuddin A., Pelayo García de Arquer F. et al. // Nat. Photon. 2021. V. 15. P. 656. https://doi.org/10.1038/s41566-021-00855-2
  2. Lee H.-J., Park G.-H., So J.-S. et al. // Infrared Phys. Technol. 2021. V. 118. https://doi.org/10.1016/j.infrared.2021.103879
  3. Entropa A.G., Vasenev A. // Energy Proc. 2017. V. 132. P. 63. https://doi.org/10.1016/j.egypro.2017.09.636
  4. Kitabayashi H., Ishihara K., Kawabata Y. et al. // SEI Tech. Rev. 2010. V. 72. P. 71.
  5. Infrared Illumination for Time-of-Flight Applications. 2008. https://lumileds.com/wp-content/uploads/files/WP35.pdf
  6. Kim D.K., Lee H.J., Won-Chan An. et al. // J. Korean Phys. Soc. 2018. V. 72. № 9. P. 1020. https://doi.org/10.3938/jkps.72.1020
  7. Lin Hl., Zeng Xh., Shi Sm. et al. // Optoelectron. Lett. 2019. V. 15. № 2. P. 113. https://doi.org/10.1007/s11801-019-8113-6
  8. Peng Bai P., Zhang Y., Wang T. et al. // Semicond. Sci. Technol. 2020. V. 35. № 3. P. 035021. https://doi.org/10.1088/1361-6641/ab6dbf
  9. Shubert E.F. Light-Emitting Diodes (second edition). Cambridge University Press, 2006. https://doi.org/10.1017/CBO9780511790546
  10. Малевская А.В., Калюжный Н.А., Малевский Д.А. и др. // Физика и техника полупроводников. 2021. Т. 55. № 8. С. 699. https://doi.org/10.21883/FTP.2021.08.51143.9665
  11. Kim S.-D., Lee H., Harris J.S.J. // Electrochem. Soc. 1995. V. 142. № 5. P. 1667. https://doi.org/10.1149/1.2048636
  12. Yu Y., Qin X., Huang B. et al. // Vacuum. 2003. V. 69. P. 489. https://doi.org/10.1016/S0042-207X(02)00560-2
  13. Kim D.-K., Lee H.-J. // J. Nanosci. Nanotechnol. 2018. V. 18. № 3. P. 2014. https://doi.org/10.1166/jnn.2018.14952
  14. Xu D.P., D’Souza M., Shin J.C. et al. // J. Cryst. Growth. 2008. V. 310. P. 2370. https://doi.org/10.1016/j.jcrysgro.2007.11.218
  15. Moss T.S., Burrell G.J., Ellis B. Semiconductor Opto-Electronic. Butterworth & Co. Ltd, 1973. https://doi.org/10.1016/C2013-0-04197-7
  16. Pankove J.I. Optical processes in semiconductors. Prentice-Hall. Inc., 1971.
  17. Urbach F. // Phys. Rev. 1953. V. 92. P. 1324. https://doi.org/10.1103/PhysRev.92.1324
  18. Casey H.C., Sell D.D., Wecht K.W. // J. Appl. Phys. 1975. V. 46. № 1. P. 250. https://doi.org/10.1063/1.321330
  19. Гуревич С.А., Федорович А.Е., Федоров А.В. // Физика и техника полупроводников. 1991. Т. 5. С. 769.
  20. Abroug S., Saadallah F., Yacoubi N. // Eur. Phys. J. Spec. Top. 2008. V. 153. P. 29. https://doi.org/10.1140/epjst/e2008-00386-7
  21. Малевская А.В., Калюжный Н.А., Малевский Д.А. и др. // Физика и техника полупроводников. 2021. Т. 55. № 7. С. 614. https://doi.org/10.21883/FTP.2021.07.51028.9646
  22. Ahn S.-C., Lee B.-T., An W.-C. et al. // J. Korean Phys. Soc. 2016. V. 69. № 1. P. 91. https://doi.org/10.3938/jkps.69.91
  23. Малевская А.В., Калюжный Н.А., Минтаиров С.А. и др. // Физика и техника полупроводников. 2021. Т. 55. № 12. С. 1218. https://doi.org/10.21883/FTP.2021.12.51709.9711
  24. Tzou A.-J., Lin B.-Ch., Lee Ch.-Y. et al. // J. Photon. Energy. 2015. V. 5. P. 057604–14. https://doi.org/10.1117/1.JPE.5.057604
  25. Малевская А.В., Калюжный Н.А., Солдатенков Ф.Ю. и др. // ЖТФ. 2023. Т. 93. № 1. С. 170. https://doi.org/10.21883/JTF.2023.01.54078.166-22
  26. Bailey C.G., Hubbard S.M., Forbes D.V. et al. // Appl. Phys. Lett. 2009. V. 95. № 20. P. 203110. https://doi.org/10.1063/1.3264967
  27. Van de Walle C.G. // Phys. Rev. 1989. V. 39. № 3. P. 1871. https://doi.org/10.1103/PhysRevB.39.1871
  28. Rudinsky M.E., Karpov S. Yu., Lipsanen H. et al. // Mat. Phys. Mechanics. 2015. V. 24. № 3. P. 278. https://doi.org/10.1134/S1063782613090054
  29. Redaelli L., Mukhtarova A., Valdueza-Felip S. et al. // Appl. Phys. Lett. 2014. V. 105. № 13. P. 131105. https://doi.org/10.1063/1.4896679
  30. Ekins-Daukes N.J., Kawaguchi K., Zhang J. // Cryst. Growth Des. 2002. V. 2. № 4. P. 287. https://doi.org/10.1021/cg025502y
  31. An W.-C., Kim H.-G., Kwac L.-K. et al. // J. Nanosci. Nanotechnol. 2019. V. 19. P. 2224. https://doi.org/10.1166/jnn.2019.15974
  32. Cho J., Schubert E.F., Kim J.K. // Laser Photon. Rev. 2013. V. 7. № 3. P. 408. https://doi.org/10.1002/lpor.201200025
  33. Fu H., Zhao Y. Nitride Semiconductor Light-Emitting Diodes (LEDs) (Second Edition). Elsevier Ltd, 2018. https://doi.org/10.1016/B978-0-08-101942-9.00009-5

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Heterostructures for manufacturing LEDs using standard post-growth technology: direct growth (a), using the technology of transfer to a carrier substrate – reverse growth (b).

Download (209KB)
3. Fig. 2. Sequence of post-growth operations in the manufacture of inverted LEDs based on reverse-growth heterostructures with technologies for their transfer to a carrier substrate and application of a rear metal reflector.

Download (216KB)
4. Fig. 3. PL spectra for 850R (1) and 940R (2) heterostructures at room temperature.

Download (86KB)
5. Fig. 4. Dependence of the IPL maximum on the thickness of the compensating layer in a series of In0.17GaAs/Al0.25GaAsP0.04 MQW samples (series of 940SB1 samples).

Download (50KB)
6. Fig. 5. Room-temperature PL spectra for heterostructures with MQWs: 1 – 940R, 2 – 940SB1, 3 – 940SB2, 4 – 940SB3A, 5 – 940SB3B; inset – dependence of the IPL maximum at room temperature on the product da/a and the layer thickness.

Download (177KB)
7. Fig. 6. Current dependences of external quantum efficiency (a), energy efficiency (b), output optical power for LEDs on a substrate with a doping level of 4 × 1018 cm–3 (HDS-led), 5 × 1017 cm–3 (LDS-led) and for LEDs manufactured using the transfer technology onto a carrier substrate (TSC-led) (c).

Download (243KB)

Copyright (c) 2024 Russian Academy of Sciences