On the mechanism of growth of lactose crystals from supersaturated solutions

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The substantiation of the existence of cavitation zones on the edges of a growing lactose crystal and its driving role in the crystal growth process is presented. It is shown that the most favorable conditions for the conversion of dissolved lactose into its crystalline form are created around the edges of the crystal in the phase transition zones. The size of the phase transition zone of the crystallizing substance is calculated and compared with the available data on the size of crystalline nuclei. The values of the radius of cavitation zones were obtained, which amounted to: nanometers (for a crystal with a size of 60.5 microns, at a temperature of 30°C and supersaturation of 0.55) and nanometers (for a crystal with a size of 84 microns, at a temperature of 50°C and supersaturation of 1.88). A mathematical model of the growth rate of lactose crystals in a supersaturated solution is proposed. The possibility of studying the mechanisms of crystallization and determining the growth rate of lactose crystals is substantiated, based on the theory of dynamic interaction of bodies and liquids by A. Y. Milovich.

全文:

受限制的访问

作者简介

E. Fialkova

Federal State Budgetary Educational Institution of Higher Education “Vologda State Dairy Farming Academy by N. V. Vereshchagin”

Email: vshevchuk@list.ru
俄罗斯联邦, Vologda

V. Shevchuk

Federal State Budgetary Educational Institution of Higher Education “Vologda State Dairy Farming Academy by N. V. Vereshchagin”

编辑信件的主要联系方式.
Email: vshevchuk@list.ru
俄罗斯联邦, Vologda

A. Gnezdilova

Federal State Budgetary Educational Institution of Higher Education “Vologda State Dairy Farming Academy by N. V. Vereshchagin”

Email: vshevchuk@list.ru
俄罗斯联邦, Vologda

Y. Vinogradova

Federal State Budgetary Educational Institution of Higher Education “Vologda State Dairy Farming Academy by N. V. Vereshchagin”

Email: vshevchuk@list.ru
俄罗斯联邦, Vologda

V. Baronov

Federal State Budgetary Educational Institution of Higher Education “Vologda State Dairy Farming Academy by N. V. Vereshchagin”

Email: vshevchuk@list.ru
俄罗斯联邦, Vologda

参考

  1. Ivanov V.K., Fedorov P.P., Baranchikov A.E., Osiko V.V. // Russ. Chem. Rev. 2014. V. 83. № 12. Р. 1204. https://doi.org/10.1070/RCR4453
  2. Гиббс Дж.В. Термодинамические работы. М.; Л.: Гос. изд-во технико-теоретической литературы, 1950. 492 с.
  3. Асхабов А.М. // Вестник ИГ Коми НЦ УрО РАН. 2016. № 5. С. 13.
  4. Федоров Е.С. // Природа. 1915. Т. 12. С. 1471.
  5. Юшкин Н.П. Теория микроблочного роста кристаллов в природных гетерогенных растворах. Сыктывкар: Изд-во Ин-та геологии КФ АН СССР, 1971. 53 с.
  6. Фольмер М. Кинетика образования новой фазы. М.: Наука, 1986. 208 с.
  7. Странский И.Н., Каишев Р. // Успехи химии. 1939. Т. 21. № 4. С. 408.
  8. Шевчук В.Б. Автореф. Исследование процесса массовой кристаллизации лактозы в сгущенных молочных консервах с сахаром. Дис. … канд. техн. наук. Вологда. 2003.
  9. Rjabova A.E., Kirsanov V.V., Strizhko M.N. et al. // Foods Raw Mater. 2013. V. 1. P. 66. https://doi.org/10.12737/1559
  10. Делоне Б.М. // Успехи мат. наук. 1937. № 3. С. 16.
  11. Галиулин Р.В. Кристаллографическая геометрия. М.: Наука, 1984. 135 с.
  12. Голубев В.Н. // Вестник МГУ. География. 2013. № 3. С. 19.
  13. Гнездилова А.И., Перелыгин В.М. Физико-химические основы мелассообразования и кристаллизации лактозы и сахарозы в водных растворах. Воронеж: Изд-во Воронеж. гос. ун-та, 2002. 96 с.
  14. Pisponen A., Mootse H., Poikalainen V. et al. // Int. Dairy J. 2016. V. 61. P. 205. https://doi.org/10.1016/j.idairyj.2016.06.006
  15. Зельдович Я.Б. Избранные труды. Химическая физика и гидродинамика. М.: Наука, 1984. 374 с.
  16. Гнатенко А.Г., Дитман А.О., Невоструев Ю.И. и др. // Ученые записки ЦАГИ. 1974. Т. 5. № 3. С. 134.
  17. Adrian R.J. // Phys. Fluids. 2007. V. 19. № 4. P. 041301. https://doi.org/10.1063/1.2717527
  18. Милович А.Я. Теория динамического взаимодействия тел и жидкости. М.: Гос. изд-во лит. по строительству и архитектуре, 1955. 311 с.
  19. Hunziker O.F., Nissen B.H. // J. Dairy Sci. 1927. V. 10. P. 139. https://doi.org/10.3168/jds.S0022-0302(27)93825-9
  20. van Kreveld A., Michaels A.S. // J. Dairy Sci. 1965. V. 48. № 3. P. 259. https://doi.org/10.3168/jds.S0022-0302(65)88213-3
  21. Fries D.C., Rao S.T., Sundaralingam M. // Acta Cryst. B. 1971. V. 27. P. 994. https://doi.org/10.1107/S0567740871003364
  22. Shin Yee Wong, Hartel R.W. // J. Food Sci. 2014. V. 79. № 3. P. 257. https://doi.org/10.1111/1750-3841.12349
  23. Herrington B.L. // J. Dairy Sci. 1934. V. 17. № 8. P. 533. https://doi.org/10.3168/jds.S0022-0302(34)93270-7
  24. Hartel R.W., Shastry A.V. // Crit. Rev. Food Sci. Nutr. 1991. V. 30. № 1. P. 49. https://doi.org/10.1080/10408399109527541
  25. Zeng X.M., Martin G.P., Marriott C., Pritchard J. // J. Pharm. Pharmacol. 2000. V. 52. № 6. P. 633. https://doi.org/10.1211/0022357001774462
  26. Garnier S., Petit S., Coquerel G. // J. Cryst. Growth. 2002. V. 234. № 1. P. 207.
  27. Herrington B.L. // J. Dairy Sci. 1934. V. 17. № 7. P. 501. https://doi.org/10.3168/jds.S0022-0302(34)93265-3
  28. Parimaladevi P., Srinivasan K. // Int. Dairy J. 2014. V. 9. № 2. P. 301. https://doi.org/10.1016/j.idairyj.2014.08.007
  29. Raghavan S.L., Ristic R.I., Sheen D.B. et al. // J. Phys. Chem. B. 2000. V. 104. № 51. Р. 12256. https://doi.org/10.1021/jp002051o
  30. Arellano M.P., Aguilera J.M., Bouchon P. // Carbohydrate Res. 2004. V. 339. № 16. P. 2721. https://doi.org/10.1016/j.carres.2004.09.009
  31. Храмцов А.Г. Молочный сахар. М.: Агропромиздат, 1987. 224 c.
  32. Шурчкова Ю.А. Автореф. Исследования охлаждения перегретой жидкости в вакууме. Дис. … канд. техн. наук. Киев, 1971. 20 c.
  33. Клубович В.В., Толочко Н.К. Вторично зародышеобразование в растворах. Мн.: Навука i тэхнiка, 1992. 161 c.
  34. Стриклэнд-Констэбл Р.Ф. Кинетика и механизм кристаллизации. Л.: Недра, 1971. 310 c.
  35. Strickland-Constable R.F., Mason R.E.A. // Nature. 1963. V. 197. P. 897. https://doi.org/10.1038/197897b0
  36. Mason R.E.A., Strickland-Constable R.F. // Trans. Faraday soc. 1966. V. 62. P. 45. https://doi.org/10.1039/TF9666200455
  37. Pandalaneni K., Amamcharla J.K. // J. Dairy Sci. 2016. V. 99. № 7. P. 5244. https://doi.org/10.3168/jds.2015-10643
  38. Mimouni A., Schuck P., Bouhallab S. // Le Lait. 2005. V. 85. № 4–5. P. 253. https://doi.org/10.1051/lait: 2005015
  39. Dincer T.D. Mechanisms of Lactose Crystallisation. 2000. PhD Thesis. School of Applied Chemistry, Curtin University of Technology. http://hdl.handle.net/20.500.11937/1958
  40. Dincer T.D., Ogden M.I., Parkinson G.M. // J. Cryst. Growth. 2009. V. 311. P. 2427. https://doi.org/10.1016/j.jcrysgro.2009.02.030
  41. Arellano M.P., Miguel J., Bouchon P. // Carbohydr. Res. 2004. V. 339. P. 2721. https://doi.org/10.1016/j.carres.2004.09.009
  42. Shi Y., Hartel W., Liang B. // J. Dairy Sci. 1989. V. 72. P. 2906. http://dx.doi.org/10.3168/jds.S0022-0302(89)79441-8
  43. Jelen P., Coulter S. // J. Food Sci. 1973. V. 38. P. 1182. https://doi.org/10.1111/j.1365–2621.1973.tb07234.x
  44. Visser R.A. // Neth. Milk Dairy J. 1982. V. 36. № 3. P. 167.
  45. Dincer T.D., Ogden M.I., Parkinson G.M. // J. Cryst. Growth. 2009. V. 311. P. 1352. https://doi.org/10.1016/j.jcrysgro.2009.01.016

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. A typical tomahawk-shaped lactose crystal with Miller indices for its faces (a) and a photograph of the crystal magnified 62 times [20] (b); a simplified geometric model of the lactose crystal (c), (d).

下载 (325KB)
3. Fig. 2. Flow of a supersaturated solution flowing around a freely falling crystal [18]: X, Y are the coordinate axes, A and B are the centers of the vortex cords, l1 and l2 are the radial coordinates of the location of point m, x and y are the Cartesian coordinates of point m, O1 and O2 are the vortex flows, v0 is the velocity of the liquid medium.

下载 (112KB)
4. Fig. 3. Vortex cords resulting from the flow of liquid around a plate (crystal).

下载 (108KB)
5. Fig. 4. Dependence of the growth rate of lactose crystals on its size at a temperature of 30°C and supersaturation of 0.55 (a), 1.29 (b) and 2.75 (c); Δ – experimental data [39], • – theoretical data (formula 15).

下载 (182KB)
6. Fig. 5. Dependence of the average growth rate of lactose crystals on the supersaturation of the solution at a constant temperature of 30°C [45].

下载 (180KB)

版权所有 © Russian Academy of Sciences, 2024