Токовые слои электронных масштабов, наблюдаемые миссией MMS в русле высокоскоростных потоков в плазменном слое геомагнитного хвоста

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Наблюдения миссии MMS с высоким временным и пространственным разрешением позволили исследовать характеристики интенсивных сверхтонких токовых слоев (СТС) с плотностью тока J > 30 нА/м2, формируемых в русле быстрых плазменных потоков (БПП), распространяющихся в плазменном слое (ПС) геомагнитного хвоста из области магнитного пересоединения. Статистический анализ более 1000 наблюдений СТС в ПС показал, что, в большинстве случаев, ток в СТС является продольным, и основной вклад в его генерацию вносят пучки ускоренных электронов, движущиеся вдоль магнитного поля. Характерная толщина СТС равна нескольким гирорадиусам электронов. В таких слоях электрический ток может переносить популяция размагниченных электронов. На краях и внутри СТС часто наблюдаются всплески сильных неидеальных электрических полей E’ > 10 мВ/м. Генерация таких полей обусловливает плотность мощности энергии, выделяемой в СТС и составляющей несколько сотен пВт/м3, а в некоторых случаях — до нескольких нВт/м3, что сравнимо с мощностью энергии, выделяемой в X-линии. Наиболее сильное энерговыделение наблюдается в СТС, сформированных в русле наиболее высокоскоростных БПП и при сильных вариациях магнитного поля в долях хвоста.

Texto integral

Acesso é fechado

Sobre autores

Е. Григоренко

Институт космических исследований РАН

Autor responsável pela correspondência
Email: elenagrigorenko2003@yandex.ru
Rússia, Москва

М. Леоненко

Институт космических исследований РАН; Московский физико-технический институт (национальный исследовательский университет)

Email: elenagrigorenko2003@yandex.ru
Rússia, Москва; Долгопрудный

А. Малыхин

Институт космических исследований РАН

Email: elenagrigorenko2003@yandex.ru
Rússia, Москва

Л. Зелёный

Институт космических исследований РАН

Email: elenagrigorenko2003@yandex.ru
Rússia, Москва

Х. Фу

Университет Бейханг; Главная Лаборатория по мониторингу космической среды и обработке информации

Email: elenagrigorenko2003@yandex.ru

Факультет исследований космоса и окружающей среды

República Popular da China, Пекин; Пекин

Bibliografia

  1. Baumjohann W., Roux A., Le Contel et al. Dynamics of thin current sheets: Cluster observations // Annales Geophysicae. 2007. V. 25. P. 1365–1389. https://doi.org/10.5194/angeo-25-1365-2007.
  2. Petrukovich A.A., Artemyev A.V., Malova H.V. et al. Embedded current sheets in the Earth’s magnetotail // J. Geophysical Research. 2011. V. 116. Iss. A00I25. https://doi.org/10.1029/2010JA015749
  3. Grigorenko E.E., Sauvaud J.A., Palin L. et al. THEMIS observations of the current sheet dynamics in response to the intrusion of the high‐velocity plasma flow into the near‐Earth magnetotail // J. Geophysical Research: Space Physics. 2014. V. 119. Iss. 8. P. 6553–6568. https://doi.org/10.1002/2013JA019729
  4. Büchner J., Zelenyi L.M. Regular and chaotic charged particle motion in magnetotail-like field reversals: 1. Basic theory of trapped motion // J. Geophysical Research: Space Physics. 1989. V. 94. Iss. A9. P. 11821–11842. https://doi .org/10.1029/JA094iA09p11821
  5. Zelenyi L.M., Malova H.V., Popov V. et al. Nonlinear equilibrium structure of thin currents sheets: influence of electron pressure anisotropy // Nonlinear Processes in Geophysics. 2004. V. 11. Iss. 1. P. 1–9.
  6. Zelenyi L.M., Malova H.V., Popov V. et al. “Matreshka” model of multilayered current sheet // Geophysical Research Letters. 2006. V. 33. Iss. L05105. https://doi.org/10.1029/2005GL025117
  7. Зеленый Л.М., Малова Х.В., Григоренко Е.Е. и др. Тонкие токовые слои: от работ Гинзбурга-Сыроватского до наших дней // Успехи Физических Наук. 2016. Т. 186. № 11. С. 1153–1188
  8. Burch J., Moore T., Torbert R., Giles B. Magnetospheric multiscale overview and science objectives // Space Science Reviews. 2016. V. 199. Iss. 1. P. 5–21. https://doi.org/10.1007/s11214-015-0164-9
  9. Wang R., Lu Q., Nakamura R. et al. An electron‐scale current sheet without bursty reconnection signatures observed in the near‐Earth tail // Geophysical Research Letters. 2018. V. 45. Iss. 10. P. 4542–4549. doi.org/10.1002/2017GL076330
  10. Leonenko M.V., Grigorenko E.E., Zelenyi L.M. et al. MMS Observations of Super Thin Electron‐Scale Current Sheets in the Earth’s Magnetotail // J. Geophysical Research: Space Physics. 2021. V 26. Iss. 11. Art.ID. e2021JA029641. doi.org/10.1029/2021JA029641
  11. Tsareva O.O., Leonenko M.V., Grigorenko E.E. et al. Nonlinear Equilibrium Structure of Super Thin Current Sheets: Influence of Quasi-Adiabatic Electron Population // J. Geophysical Research-Space Physics. 2023. V. 128. Iss. 6. Art.ID. e2023JA031459. doi: 10.1029/2023JA031459
  12. Tsareva O.O., Leonenko M.V., Grigorenko E.E. et al. Fast tearing mode driven by demagnetized electrons // Geophysical Research Letters. 2024. (in progress)
  13. Малыхин А.Ю., Григоренко Е.Е. Наблюдения спутниками MMS мелкомасштабных магнитных и токовых структур во время продолжительных диполизаций в ближнем геомагнитном хвосте // Физика плазмы. 2021. Т. 47. № 5. С. 410–414. doi: 10.31857/S0367292121050061
  14. Zhou M., Berchem J., Walker R.J. et al. Coalescence of macroscopic flux ropes at the subsolar magnetopause: Magnetospheric Multiscale observations // Physical Review Letters. 2017. V. 119. Iss. 5. https://doi.org/10.1103/physrevlett.119.055101.
  15. Zhou M., Man H.Y., Deng X.H. et al. Observations of secondary magnetic reconnection in the turbulent reconnection outflow // Geophysical Research Letters. 2021. V. 48. Art.ID. e2020GL091215. https://doi.org/10.1029/2020GL091215
  16. Gingell I., Schwartz S.J., Eastwood J.P. et al. Observations of magnetic reconnection in the transition region of quasi-parallel shocks // Geophysical Research Letters. 2019. V. 46. Iss. 3. P. 1177–1184. https://doi.org/10.1029/2018gl081804.
  17. Chen Z.Z., Fu H.S., Wang Z. et al. Evidence of Magnetic Nulls in the Reconnection at Bow Shock // Geophysical Research Letters. 2019. V. 46. P. 10209–10218. doi: 10.1029/2019GL084360
  18. Man H.Y., Zhou M., Deng X.H. et al. In situ observation of magnetic reconnection between an earthward propagating flux rope and the geomagnetic field// Geophysical Research Letters. 2018. V. 45. Iss. 17. P. 8729–8737. https://doi.org/10.1029/2018gl079778.
  19. Lu S., Wang R., Lu Q. et al. Magnetotail reconnection onset caused by electron kinetics with a strong external driver // Nature Communications. 2020. V. 11. Iss. 5049. https://doi.org/10.1038/s41467-020-18787-w
  20. Russell C.T., Anderson B.J., Baumjohann W. et al. The magnetospheric multiscale magnetometers // Space Science Reviews. 2016. V. 199. Iss. 1. P. 189–256. doi.org/10.1007/s11214-014-0057-3
  21. Lindqvist P.A., Olsson G., Torbert R.B. et al. The spin-plane double probe electric field instrument for MMS // Space Science Reviews. 2016. V. 199. Iss. 1. P. 137–165. doi.org/10.1007/s11214-014-0116-9
  22. Pollock C., Moore T., Jacques A. et al. Fast plasma investigation for magnetospheric multiscale // Space Science Reviews. 2016. V. 199. Iss. 1. P. 331–406. doi.org/10.1007/s11214-016-0245-4
  23. Runov A., Angelopoulos V., Sitnov M.I et al. THEMIS observations of an earthward‐propagating dipolarization front // Geophysical Research Letters. 2009. V. 36. Iss. 14. P. 1–7. doi.org/10.1029/2009GL038980.
  24. Robert P., Dunlop M.W., Roux A., Chanteur G. Accuracy of current density determination // Analysis Methods for Multi-Spacecraft Data. Ed. Pashmann G., Daly P.W. / ISSI Scientific Report SR-001. Bern. 1998. P. 395–418.
  25. Hwang K.‐J., Choi E., Dokgo K. et al. Electron vorticity indicative of the electron diffusion region of magnetic reconnection // Geophysical Research Letters. 2019. V. 46. P. 6287–6296. https://doi.org/10.1029/ 2019GL082710
  26. Sönnerup B.U.Ö., Scheible M. Minimum and Maximum Variance Analysis // Analysis Methods for Multi-Spacecraft Data. Ed. Pashmann G., Daly P.W. / ISSI Scientific Report SR-001. Bern. 1998. P. 185–220.
  27. Harvey C. C. Analysis methods for multi-spacecraft data. Bern: ISSI Scientific Report SR-001. 1998. P. 307
  28. Harris E.G. On a plasma sheet separating regions of oppositely directed magnetic field // Nuovo Cimento. 1962. V. 23. P. 115–123.
  29. Drake J.F., Swisdak M., Cattell C. et al. Formation of electron holes and particle energization during magnetic reconnection // Science. 2003. V. 299. P. 873.
  30. Pritchett P.L., Mozer F.S. Asymmetric magnetic reconnection in the presence of a guide field // J. Geophys. Res. 2009. V. 114. Iss. A11210. doi: 10.1029/2009JA014343
  31. Divin A., Lapenta G., Markidis S. et al. Numerical simulations of separatrix instabilities in collisionless magnetic reconnection // Phys. Plasmas. 2012. V. 19. Art.ID. 042110. doi: 10.1063/1.3698621
  32. Lapenta G., Goldman M., Newman D. et al. Electromagnetic energy conversion in downstream fronts from three dimensional kinetic reconnection // Phys. Plasmas. 2014. V. 21. Art.ID. 055702. doi: 10.1063/1.4872028
  33. Torbert R.B., Burch J.L., Phan T.D. et al. Electron-scale dynamics of the diffusion region during symmetric magnetic reconnection in space // Science. 2018. V. 362. P. 1391–1395. doi: 10.1126/science.aat2998
  34. Jain N., Büchner J., Comişel H. et al. Free Energy Sources in Current Sheets Formed in Collisionless Plasma Turbulence // The Astrophysical J. 2021. V. 919. Iss. 103. https://doi.org/10.3847/1538-4357/ac106c.
  35. Egedal J., Fox W., Katz N. et al. Evidence and theory for trapped electrons in guide field magnetotail reconnection // J. Geophys. Res. 2008. V. 113. Iss. A12207. doi: 10.1029/2008JA013520
  36. Egedal J., Daughton W., Lê A. Large-scale electron acceleration by parallel electric fields during magnetic reconnection // Nat. Phys. 2012. V. 8. P. 321–324. doi: 10.1038/NPHYS2249
  37. Sergeev V.A., Angelopoulos V., Nakamura R. Recent advances in understanding substorm dynamics // Geophysical Research Letters. 2012. V. 39. doi: 10.1029/2012GL050859.
  38. Fu H.S., Vaivads A., Khotyaintsev Y.V. et al. Intermittent energy dissipation by turbulent reconnection, // Geophysical Research Letters. 2017. V. 44. P. 37–43. doi: 10.1002/2016GL071787.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Overview of the BPP interval observed by the MMS-1 satellite on 9.VII.2017 at 10:45–10:51 UT. From top to bottom: time profiles of three magnetic field components (a); field modulus in tail lobes (b); X-component of ion flow velocity (c): X-component of ion and electron flow velocity (d); electron temperature (e); current density. Gray circles mark the SCS (f); modulus of the observed electric field, |-Ve × B|, |-Vi × B| (g); parameter J E’ (h). The vertical black line marks the SCS shown in Fig. 2.

Baixar (101KB)
3. Fig. 2. Overview of the STS interval marked in Fig. 1 by the vertical black line. From top to bottom: time profiles of |J| and |Je|, shown in black and gray, respectively (a); VJ of electrons measured on different MMS satellites (shown in corresponding colors) and VJ of ions observed on MMS-1 (shown in gray) (b); LMN — components of the magnetic field in the MMS barycenter (c) and the current density (d); Ne measured on different MMS satellites (shown in corresponding colors) (e); LMN — components of the E’ field measured in the MMS barycenter (f); parameter (g) and (J|| E||) (h) measured on different MMS satellites (shown in corresponding colors); 2D slices of the electron velocity distribution functions (u, k); The spatial profile of the current density JM(lN) and its approximation by the Harris profile are shown in black and gray colors, respectively (l).

Baixar (81KB)
4. Fig. 3. Schematic representation of the dipolarization front with the STS created by the longitudinal beam of accelerated electrons (shown in shades of pink). The gradient fill schematically depicts the change of sign (in the lighter zone . The direction of the current J in the STS is shown by the red arrow. The MMS satellites are shown by dark blue circles with the corresponding numbers. The trajectory of the intersection of the STS by the MMS quartet is shown by the dark blue dotted line. The direction of movement of the accelerated plasma flows from the region of possible secondary reconnection to the STS is shown by light blue arrows. The direction of the fast flow carrying the dipolarization front to the Earth is shown by the black arrow.

Baixar (12KB)
5. Fig. 4. Statistical distributions (option 1) of the characteristics of the STS observed during the intervals of the BBP moving towards the Earth (left column) and away from the Earth (right column).

Baixar (89KB)
6. Fig. 5. Statistical distributions (option 2) of the characteristics of the STS observed in the intervals of the BBP moving towards the Earth (left column) and away from the Earth (right column).

Baixar (48KB)
7. Fig. 6. Statistical distributions (option 3) of the characteristics of the STS observed in the intervals of the BBP moving towards the Earth (left column) and away from the Earth (right column).

Baixar (101KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024