Stabilization of bulk nanobubbles with a hydrate layer

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The stabilization of nanobubbles is considered with the balance of the Laplace pressure at their boundary due to surface tension and electrostatic pressure due to Coulomb forces. The presence of a hydrate layer of thickness ~1 nm with a tangential orientation of water dipoles around it is taken into account, the low permittivity of which, approximately equal to 3, increases the pressure at the nanobubble boundary. The sizes and charge of a stable nanobubble are determined. It is shown that in salt water, the hydration layer, regardless of the charge of the nanobubble, increases the pressure at its boundary by almost 30 times, and in fresh water - several times less.

全文:

受限制的访问

作者简介

Yu. Levin

Институт прикладной механики РАН

编辑信件的主要联系方式.
Email: iam-ras@mail.ru
俄罗斯联邦, 125040, Москва, Ленинградский просп., д. 7, стр. 1

参考

  1. Tan B.H., An H., Ohl C.-D. How bulk nanobubbles might survive // Physical Review Letters. 2020. V. 124. P. 134503. https://doi.org/10.1103/PhysRevLett.124.134503
  2. Бункин Н.Ф., Шкирин А.Ф. Исследование бабстонно-кластерной структуры воды и водных растворов электролитов методами лазерной диагностики // Труды ИОФАН им. А.М. Прохорова. 2013. Т. 69. С. 3–57.
  3. Favvas E.P., Kyzas G Z., Efthimiadou E.K., Mitropoulos A.Ch. Bulk nanobubbles, generation methods and potential applications// Current Opinion in Colloid & Interface Science. 2020. Vol. 54. P. 101455. https://doi.org/10.1016/j.cocis.2021.101455
  4. Nazary S., Hassanzadeh A., He Y., Khoshdast H., Kowalczuk P.B. Recent developments in generation, detection and application of nanobubbles in flotation // Minerals. 2022. V. 12. № 4. Р. 462. https://doi.org/10.3390/min12040462
  5. Wang H., Varghese J., Pilon L. Simulation of electric double layer capacitors with mesoporous electrodes: Effects of morphology and electrolyte permittivity // Electrochim. Acta. 2011. V. 56. № 17. P. 6189–6197. https://doi.org/10.1016/j.electacta.2011.03.140
  6. Singh S. B., Shukla N., Cho C. H., Kim B.S., Park M.H., Kim K. Effect and application of micro- and nanobubbles in water purification // Toxicology and Environmental Health Sciences. 2021. V. 13. Р. 9–16. https://doi.org/10.1007/s13530-021-00081-x
  7. Meegoda J.N, Hewage S.A., and Batagoda J.H. Stability of nanobubbles // Environmental Engineering Science. 2018. V. 35. № 11. Р. 1216–1227. http://doi.org/10.1089/ees.2018.0203
  8. Meegoda J.N., Hewage S.A., and Batagoda J.H. Application of the diffused double layer theory to nanobubbles // Langmuir 2019. V. 35. № 37. Р. 12100−12112. https://doi.org/10.1021/acs.langmuir.9b01443
  9. Kelsall G.H., Tang S., Yurdakult S., Smith A.L. Electrophoretic behaviour of bubbles in aqueous electrolytes // J. Chem. SOC., Faraday Trans. 1996. V. 92. № 20. P. 3887–3893. https://doi.org/10.1039/FT9969203887
  10. Chan D.Y.C., Mitchell D.J. The free energy of an electrical double layer // Journal of Colloid and Interface Science. 1983. V. 95. № 1. P. 193–197.
  11. Бункин Н. Ф., Бункин Ф. В. Бабстонная структура воды и водных растворов электролитов // Успехи физических наук. 2016. Т. 186. № 9. С. 933–952. https://doi.org/10.3367/UFNr.2016.05.037796
  12. Hewage S.A., Kewalramani J. and Meegoda J.N. Stability of nanobubbles in different salts solutions // Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2021. V. 609. P. 125669. https://doi.org/10.1016/j.colsurfa.2020.125669
  13. Lopez-Garsia J.J., Moya A.A., Horno J., Delgado A., and Lez-Caballero F.G. A network model of the electrical double layer around a colloid particle // Journal of colloid and interface science. 1996. V. 183. № 1. P.124–130. https://doi.org/10.1006/jcis.1996.0525
  14. Jadhav A.J., Barigou M. On the clustering of bulk nanobubbles and their colloidal stability // Journal of Colloid and Interface Science. 2021. V. 601. P. 816–824. https://doi.org/10.1016/j.jcis.2021.05.154
  15. Ma X., Li M., Pfeiffer P. Ion adsorption stabilizes bulk nanobubbles // J. Colloid Interfac. Sci. 2022. V. 606. P. 1380–1394. https://doi.org/10.1016/j.jcis.2021.08.101
  16. Nirmalkar N., Pacek A.W., Barigou M. On the existence and stability of bulk nanobubbles // Langmuir. 2018. V. 34. № 37. Р. 10964–10973. https://doi.org/10.1021/acs.langmuir.8b01163
  17. Zhang H., Guo Z., Zhang X. Surface enrichment of ions leads to the stability of bulk nanobubbles // Soft Matter. 2020. V. 16. Р. 5470–5477. https://doi.org/10.1039/d0sm00116c
  18. Temesgen T., Bui T.T., Han M., Kim T., Park H. Micro and nanobubble technologies as a new horizon for watertreatment techniques: A review // Advances in Colloid and Interface Science. 2017. V. 246. P. 40–51. https://doi.org/10.1016/j.cis.2017.06.011
  19. Kyzas G.Z., Mitropoulos A.C. From bubbles to nanobubbles // Nanomaterials. 2021. V. 11. № 10. P. 2592. https://doi.org/10.3390/nano11102592
  20. Левин Ю.К. Механизм стабильности нанопузырей в воде // Изв. вузов. Физика. 2024. Т. 67. № 10. С. 58–61. https://doi.org/10.17223/00213411/67/10/7
  21. Weissenborn P.K., Pugh R.J. Surface tension of aqueous solutions of electrolytes: Relationship with ion hydration. Oxygen solubility, and bubble coalescence// J. Colloid Interface Science. 1996. V. 184. № 2. P. 550–563. https://doi.org/10.1006/jcis.1996.0651
  22. Craig V.S.J., Ninham B.W., and Pashley R.M. The effect of electrolytes on bubble coalescence in water // J. Phys. Chem. 1993. V. 97. №39. P. 10192–10197. https://doi.org/10.1021/j100141a047
  23. Tsao H.K., Koch D. L. Collisions of slightly deformable, high Reynolds number bubbles with shortrange repulsive forces // Physics of Fluids. 1994. V. 6. № 8. P. 2591–2605. https://doi.org/10.1063/1.868149
  24. Koshoridze S.I. and Levin Yu.K. Thermodynamic analysis of the stability of nanobubbles in water // Nanoscience and Technology: An International Journal. 2019. V. 10. № 1. P.21–27. https://doi.org/10.1615/NanoSciTechnolIntJ.2018028801
  25. Calgaroto S., Willberg K. Q. and Rubio J. On the nanobubbles interfacial properties and future applications in flotation // Minerals Engineering. 2014. V. 60. P. 33–40. https://doi.org/10.1016/j.mineng.2014.02.002
  26. Koshoridze S.I. and Levin Yu.K. Comment on “Can bulk nanobubbles be stabilized by electrostatic interaction?” by S. Wang, L. Zhou and Y. Gao, Phys. Chem. Chem. Phys. 2021. 23. 16501 // Phys. Chem. Chem. Phys. 2022. V. 24. P. 10622–10625. https://doi.org/10.1039/D1CP04406K
  27. Joly L., Ybert C., Trizac E., Bocquet L. Hydrodynamics within the electric double layer on slipping surfaces // Phys. Rev. Lett. 2004. V. 93. P. 257805. https://doi.org/10.1103/PhysRevLett.93.257805
  28. Бошенятов Б.В., Кошоридзе C.И., Левин Ю.К. Об устойчивости нанопузырей в воде // Изв. вузов. Физика. 2018. Т. 61. № 10. С. 149−155.
  29. Кошоридзе С.И., Левин Ю.К. Условия зарождения и стабильности объемных нанопузырьков // Изв. вузов. Физика. 2022. № 1. С. 89–95. https://doi.org/10.17223/00213411/65/1/89c
  30. Кошоридзе C.И., Левин Ю.К. Стабильность заряженных нанопузырьков в воде. Письма в ЖТФ. 2019. Т. 45. С.61–62. https://doi.org/10.21883/PJTF.2019.01.47161.17521
  31. Левин Ю.К. Условия стабильности слоя Штерна объемных нанопузырей в воде // Изв. вузов. Физика 2022. T. 65. № 12. С. 55–59. https://doi.org/10.17223/00213411/65/12/55
  32. Fumagalli L., Esfandiar A., Fabregas R., Hu S., Ares P., Janardanan A., Yang Q., Radha B., Taniguchi T., Watanabe K., Gomila G., Novoselov K.S., Geim A.K. Anomalously low dielectric constant of confined water // Science. 2018. V. 360. C. 1339–1342. https://doi.org/10.1126/science.aat4191
  33. Toney M.F., Howard J.N., Richer J., Gary L., Gordon J.G., Melroy O.R., Wiesler D.G.; Yee D., Sorensen L.B. Voltage-dependent ordering of water molecules at an electrode-electrolyte interface // Nature. 1994. V. 368. P. 444–446. https://doi.org/10.1038/368444a0
  34. Lee C.Y., McCammon J.A., Rossky P.J. The structure of liquid water at an extended hydrophobic surface // J. Chem. Phys. 1984. V. 80. № 9. P. 4448–4455. https://doi.org/10.1063/1.447226
  35. Velasco-Velez J -J., Wu C.H., Pascal T.A., Wan L.F., Guo J.A., Prendergast D., Salmeron M. The structure of interfacial water on gold electrodes studied by x-ray absorption spectroscopy // Science. 2014. V. 346. P. 831–834. https://doi.org/10.1126/science.1259437
  36. Hewage S.A., Kewalramani J. and Meegoda J.N. Stability of nanobubbles in different salts solutions // Colloids and Surfaces. A: Physicochemical and Engineering Aspects. 2021. V. 609. P. 125669. https://doi.org/10.1016/j.colsurfa.2020.125669
  37. Левин Ю.К. Характеристики двойного электрического слоя объемных нанопузырей в воде // Коллоид. журн. 2023. Т. 85. № 3. С. 350–354. https://doi.org/10.31857/S0023291223600220
  38. Кошоридзе С.И. Влияние строения двойного электрического слоя на стабильность объемных нанопузырей // Инженерная физика. 2023. № 7. C. 22–25. https://doi.org/10.25791/infizik.7.2023.1342
  39. Меледин Г.В., Черкасский В.С. Электродинамика в задачах. Ч.1 // НГУ. 2009.
  40. Фейнман Р., Лейтон Р., Сэндс М. Фейнмановские лекции по физике. Вып. 5. М.: Мир, 1966.
  41. Левин Ю.К. Новая концепция стабильности нанопузырей в воде. // Сб. трудов 13-й Всерос. конф. «Механика композиционных материалов и конструкций, сложных и гетерогенных сред». 2023. (С. 208, гл. 1). М.: ИПРИМ РАН. https://doi.org/10.33113/conf.mkmk.ras.2023.28

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Shell structure of the bulk nanobubble.

下载 (68KB)
3. Fig. 2. Plots of Pi(r0) pressures at the nanobubble boundary (q0 = 4. 10-16 Cl) on its radius: curves 1, 2 - pressures P1(r0) and P2(r0) for ONP without -layer in salty (c = 100 mol/m3) and pure (c = 1 mol/m3) water, respectively; curves 3, 4 - pressures P3(r0) and P4(r0), for ONP with -layer in saline (c = 100 mol/m3) and pure (c = 1 mol/m3) water, respectively; curve 5 - Laplace pressure P5(r0) = PL(r0) according to formula (2).

下载 (81KB)
4. Fig. 3. Graph of dependence of the ratio P(r0)/PC(r0) on the ONP radius with and without -layer: curve 1 - pressure ratio k0(r0) = P4(r0)/P2(r0) in pure water (c = 1 mol/m3); curve 2 - pressure ratio ks(r0) = P3(r0)/P1(r0) in salt water (c = 100 mol/m3).

下载 (50KB)

版权所有 © Russian Academy of Sciences, 2025