Isotopic and solar geochronology and climatostratigraphy of the Late Pleistocene of Northern Eurasia

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The possibility of explaining the causes of global climatic changes in the Late Pleistocene of Northern Eurasia on the basis of the astronomical theory of climate change is shown.

In the Late Pleistocene, the effect of dividing seasonal radiation intensity by phases of annual Earth radiation intensity was found, which explains the mechanism of manifestation of the 100-millennial cycle in the Earth’s natural system. Solar tuning (modeling) of the climatic epochs of the Late Pleistocene of Northern Eurasia has been performed. Based on the model, the solar conditions and the mechanism of development of cover glaciations in Northern Eurasia in the Late Pleistocene are determined. The cause of global climate change is related to the dynamics of the radiation factor, the representative characteristics of which are the intensity of summer radiation and the intensity of winter meridional radiation heat transfer in the Northern Hemisphere. The chronological discrepancies between the model and actual climatic epochs, reflecting the nonlinear response of the natural system to the dynamics of irradiation, average about 7 thousand years. There is a weak response of the oxygen isotope composition (δ18O) of bottom foraminifera (maximum range of 0.2% fluctuations) to fluctuations in radiation factors of global climatic changes in Northern Eurasia.: the intensity of summer radiation in the phase division of seasonal radiation (the average range for the summer half-year is 0.486%, for July – 0.785%) and in the phases of climatic precession (the average range is 4.336%).

Full Text

Restricted Access

About the authors

V. M. Fedorov

Lomonosov Moscow State University

Author for correspondence.
Email: fedorov.msu@mail.ru
Russian Federation, Moscow

References

  1. Болиховская Н.С. Пространственно-временные закономерности развития растительности и климата Северной Евразии в неоплейстоцене // Археология, этнография и антропология Евразии. № 4 (32). С. 2–28. 2007.
  2. Большаков В.А. Новая концепция орбитальной теории климата. М.: Московский университет, 256 с. 2003.
  3. Имбри Д., Имбри К.П. Тайны ледниковых эпох. М.: Прогресс, 264 с. 1988.
  4. Мельников В.П., Смульский И.И. Астрономическая теория ледниковых периодов: Новые приближения. Решенные и нерешенные проблемы. Новосибирск: ГЕО, 98 с. 2009.
  5. Миланкович М. Математическая климатология и астрономическая теория колебаний климата. М.–Л.: ГОНТИ, 208 с. 1939.
  6. Монин А.С. Введение в теорию климата. Л.: Гидрометеоиздат, 246 с. 1982.
  7. Монин А.С., Шишков Ю.А. История климата. Л.: Гидрометеоиздат, 408 с. 1979.
  8. Федоров В.М. Голоценовый парадокс в астрономической теории климата и проблемы орбитальной настройки // Геофизические процессы и биосфера. Т. 20. № 1. С. 95–104. 2021а. https://doi.org/10.21455/GPB2021.1-9
  9. Федоров В.М. Астрономическая теория климата: вопросы модернизации и развития // Гидрометеорология и экология. № 64. С. 435–465. 2021б. https://doi.org/10.33933/2713-3001-2021-64-435-465
  10. Федоров В.М. Проблемы параметризации радиационного блока физико-математических моделей климата и возможности их решения // Успехи физических наук. Т. 193. № 9. С. 971–988. 2023. https://doi.org/10.3367/UFNr.2023.03.039339
  11. Федоров В.М. Изотопная и солярная геохронология и климатостратиграфия неоплейстоцена и голоцена / Труды XXVIII Всероссийской ежегодной конференции по физике Солнца “Солнечная и солнечно-земная физика-2014” / Ред. А.В. Степанов, Ю.А. Наговицын. СПб.: ГАО РАН. С. 319–322. 2024. https://doi.org/10.31725/0552-5829-2024-319-322
  12. Федоров В.М., Фролов Д.М. Солярная геохронология позднего плейстоцена и голоцена // Криосфера Земли. 2024. Т. 28. № 2. С. 47–57. https://doi.org/10.15372/KZ20240205
  13. Шараф Ш.Г., Будникова Н.А. Вековые изменения орбиты Земли и астрономическая теория колебаний климата // Труды Института теоретической астрономии АН СССР. Вып. 14. С. 48–84. 1969.
  14. Шулейкин В.В. Физика моря. М.: АН СССР, 990 с. 1953.
  15. Adhémar J.A. Revolutions de la mer: déluges périodiques. Paris: Carilian-Goeury et V. Dalmont, 184 p. 1842.
  16. Bassinot F.C., Labeyrie L.D., Vincent E., Quidelleur X., Shackleton N.J., Lancelot Y. The astronomical theory of climate and the age of the Brunhes-Matuyama magnetic reversal // Earth Planet. Sc. Lett. V. 126. № 1–3. P. 91–108. 1994. https://doi.org/10.1016/0012-821X(94)90244-5
  17. Berger A. Long-term variations of daily insolation and Quaternary climatic changes // J. Atmos. Sci. V. 35. № 12. P. 2362–2367. 1978. https://doi.org/10.1175/1520-0469(1978)035<2362:LTVODI>2.0.CO;2
  18. Berger A., Loutre M.F. Astronomical solutions for paleoclimate studies over the last 3 million years // Earth Planet. Sc. Lett. V. 111. № 2–4. P. 369–382. 1992. https://doi.org/10.1016/0012-821X(92)90190-7
  19. Brouwer D., Van Woerkom A.J.J. The secular variation of the orbital elements of the principal planets // Astronomical Papers. V. 13. P. 81–107. 1950.
  20. Croll J. On the eccentricity of the Earth’s orbit, and its physical relations to the glacial epochs // Philos. Mag. V. 33. № 221. P. 119–131. 1867. https://doi.org/10.1080/14786446708639757
  21. Croll J. Climate and time in their geological relations: a theory of secular changes of the Earth’s climate. London: Edward Stanford, 577 p. 1875.
  22. Fedorov V.M., Kostin A.A. The calculation of the Earth`s insolation for the 3000 BC - AD 2999 / Processes in GeoMedia. V. 1. Ed. T.O. Chaplina. Cham, Switzerland: Springer. P. 181–192. 2020. https://doi.org/10.1007/978-3-030-38177-6_20
  23. Hays J.D., Imbrie J., Shackleton N. Variation in the Earth’s orbit: pacemaker of the ice ages // Science. V. 194. № 4270. P. 1121–1132. 1976. https://doi.org/10.1126/science.194.4270.1121
  24. Imbrie J., Hays J.D., Martinson D.G., Mclntyre A., Mix A.C., Morley J.J., Pisias N.G., Prell W.L., Shackleton N.J. The orbital theory of Pleistocene climate: Support from a revised chronology, of the marine d18O record / Milankovitch and Climate. Part 1 / Eds. A. Berger, J. Imbrie, J. Hays, G. Kukla, B. Saltzman. Dordrecht: Springer. P. 269–305. 1984.
  25. Kopp G., Lean J. A new, lower value of total solar irradiance: Evidence and climate significance // Geophys. Res. Lett. V. 37. № 1. ID L01706. 2011. https://doi.org/10.1029/2010GL045777
  26. Laskar J., Joutel F., Boudin F. Orbital, precessional and insolation quantities for the Earth from – 20 Myr to + 10 Myr // Astron. Astrophys. V. 287. № 1–2. P. 522–533. 1993.
  27. Laskar J., Robutel P., Joutel F. Gastineau M., Correia A.C.M., Levrard B. A long-term numerical solution for the insolation quantities of the Earth // Astron. Astrophys. V. 428. № 1. P. 261–285. 2004. https://doi.org/10.1051/0004-6361:20041335
  28. Laskar J., Fienga A., Gastineau M., Manche H. La2010: A new orbital solution for the long-term motion of the Earth // Astron. Astrophys. V. 532. ID A89. 2011. https://doi.org/10.1051/0004-6361/201116836
  29. Lisiecki L.E., Raymo M.E. A Pliocene-Pleistocene stack of 57 globally distributed benthic d18O records // Paleoceanography. V. 20. № 1. ID PA1003. 2005. https://doi.org/10.1029/2004PA001071
  30. Malinverno A., Erba E., Herbert T.D. Orbital tuning as an inverse problem: Chronology of the early Aptian oceanic anoxic event 1a (Selli Level) in the Cismon APTICORE // Paleoceanography and Paleoclimatology. V. 25. № 2. ID PA2203. 2010. https://doi.org/10.1029/2009PA001769
  31. Molodkov A., Bolikhovskaya N. Eustatic sea-level and climate changes over the last 600 ka as derived from mollusc-based ESR-chronostratigraphy and pollen evidence in Northern Eurasia // Sedimentary Geology. V. 150. № 1–2. P. 185–201. 2002. https://doi.org/10.1016/S0037-0738(01)00275-5
  32. Vernekar A. Long-period global variations of incoming solar radiation / Long-Period Global Variations of Incoming Solar Radiation / Meteorological Monographs. V. 12. Boston, MA: American Meteorological Society. P. 1–128. 1972. https://doi.org/10.1007/978-1-935704-34-8_1

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Change in insolation during the summer caloric half-year for the latitude of 65° of the Northern Hemisphere according to data from different researchers [Melnikov and Smulsky, 2009]: (a) – [Milankovich, 1939]; (b) – [Brouwer and Van Woerkom, 1950]; (c) – [Sharaf and Budnikova, 1969]; d – [Berger and Loutre, 1992]. The abscissa axis shows time in millions of years from 1950; The ordinate axis: (a, b, c) – insolation in equivalent latitudes during the summer half-year, (d) – average monthly insolation in July W (W/m2).

Download (991KB)
3. Fig. 2. Intensity of annual irradiation of the Earth (and hemispheres) in the Neopleistocene.

Download (471KB)
4. Fig. 3. Changes in summer radiation intensity of the Northern Hemisphere in the Neopleistocene.

Download (765KB)
5. Fig. 4. The modulus of deviation of summer radiation intensity (amplitude) at extremes in the Northern Hemisphere from the long-term average for the Neopleistocene.

Download (488KB)

Copyright (c) 2025 Russian Academy of Sciences