Dynamics of the Weddel Sea anomaly and main ionospheric trough in the Southern Summer hemisphere

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The impact of the Weddell Sea Anomaly on the structure of the nighttime ionosphere in the Southern summer hemisphere is considered in detail. For this purpose, data from the CHAMP satellite were used in January 2003 under high solar activity and in January 2008 under low solar activity. The data relate to the local time interval 02-04 LT, when the increase in electron density due to the formation of an anomaly is the strongest. At longitudes of 60-180° E under high solar activity and 0–210° E at low solar activity, where there is no anomaly, the main ionospheric trough is observed. The plasma peak in the nighttime ionosphere associated with the anomaly formation reaches 6 MHz under low solar activity, and 10 MHz under high solar activity. The strongly developed plasma peak decreases sharply to high latitudes at the equatorward border of auroral diffuse precipitation, which corresponds to the plasmapause. When the anomaly is weakly developed, the contribution of diffuse precipitation becomes noticeable, so that the plasma peak expands towards the pole due to this precipitation. Poleward of anomaly, the high-latitude trough is usually observed at latitudes of the auroral oval. A well-defined minimum of the electron density is often formed equatorward of Weddell Sea Anomaly, which can be defined as a sub-trough. Sometimes the sub-trough is created by the escape of ionospheric plasma from the summer hemisphere to the winter hemisphere. Then a density maximum is formed in the winter hemisphere at conjugate latitudes. Sub-trough is much more common under low solar activity than under high activity.

Sobre autores

A. Karpachev

Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation of the Russian Academy of Sciences (IZMIRAN)

Autor responsável pela correspondência
Email: karp@izmiran.ru
Rússia, Moscow, Troitsk

Bibliografia

  1. Кринберг И.А., Тащилин А.В. Ионосфера и плазмосфера. М.: Наука, 189 с. 1984.
  2. Карпачев А.Т., Гасилов Н.А., Карпачев О.А. Морфология и причины аномалии моря Уэдделла // Геомагнетизм и аэрономия. Т. 51. № 6. С. 828−840. 2011.
  3. Карпачев А.Т. Суточные и долготные вариации экваториальной аномалии для зимнего солнцестояния по данным ИСЗ Интеркосмос-19 // Геомагнетизм и аэрономия. Т. 61. № 1. С. 20−34. 2021. https://doi.org/10.31857/S0016794021010065
  4. Карпачев А.Т. Особенности структуры зимней утренней ионосферы высоких и средних широт // Геомагнетизм и аэрономия. Т. 63. № 6. С. 788–797. 2023. https://doi.org/10.31857/S0016794023600370
  5. Aa E., Zou S., Erickson P.J., Zhang S.-R., Liu S. Statistical analysis of the main ionospheric trough using Swarm in situ measurements // J. Geophys. Res. – Space. V. 125. № 3. ID e2019JA027583. 2020. https://doi.org/10.1029/2019JA027583
  6. Ahmed M., Sagalyn R.C., Wildman P.J.L., Burke W.J. Topside ionospheric trough morphology: occurrence frequency and diurnal, seasonal and altitude variations // J. Geophys. Res. – Space. V. 84. № 2. P. 489–498. 1979. https://doi.org/10.1029/JA084iA02p00489
  7. Bellchambers W.H., Piggott W.R. Ionospheric measurements made at Halley Bay // Nature. V. 182. № 4649. P. 1596–1597. 1958. https://doi.org/10.1038/1821596a0
  8. Burns A.G., Zeng Z., Wang W., Lei J., Solomon S.C., Richmond A.D., Killeen T.L., Kuo Y.-H. The behavior of the F2 peak ionosphere over the South Pacific at dusk during quiet summer conditions from COSMIC data // J. Geophys. Res. – Space. V. 113. № 12. ID A12305. 2008. https://doi.org/10.1029/2008JA013308
  9. Dudeney J.R., Piggott W.R. Antarctic ionospheric research / Upper Atmosphere Research in Antarctica / Antarctic Research Ser., 29. Eds. L.J. Lanzerotti, C.G. Park. Washington, DC: American Geophysical Union. P. 200–235. 1978. https://doi.org/10.1029/AR029p0200
  10. Grebowsky J.M., Tailor H.A., Lindsay J.M. Location and source of ionospheric high latitude troughs // Planet. Space Sci. V. 31. № 1. P. 99–105. 1983. https://doi.org/10.1016/0032-0633(83)90034-X
  11. He M., Liu L., Wan W., Ning B., Zhao B., Wen J., Yue X., Le H. A study of the Weddell Sea Anomaly observed by FORMOSAT-3/COSMIC // J. Geophys. Res. – Space. V. 114. № 12 ID A12309. 2009. https://doi.org/10.1029/2009JA014175
  12. Horvath I., Essex E.A. The Weddell Sea Anomaly observed with the TOPEX satellite data // J. Atmos. Sol. Terr. Phys. V. 65. № 6. P. 693–706. 2003. https://doi.org/10.1016/S1364-6826(03)00083-X.
  13. Horvath I. A total electron content space weather study of the nighttime Weddell Sea Anomaly of 1996/1997 southern summer with TOPEX/Poseidon radar altimetry // J. Geophys. Res. – Space. V. 111. № 12. ID A12317. 2006. https://doi.org/10.1029/2006JA011679
  14. Horvath I., Lovell B.C. Investigating the relationships among the South Atlantic Magnetic Anomaly, southern nighttime midlatitude trough, and nighttime Weddell Sea Anomaly during southern summer // J. Geophys. Res. – Space. V. 114. № 2. ID A02306. 2009. https://doi.org/10.1029/2008JA013719
  15. Jee G., Burns A.G, Kim Y.-H., Wang W. Seasonal and solar activity variations of the Weddell Sea Anomaly observed in the TOPEX total electron content measurements // J. Geophys. Res. – Space. V. 114. № 4. ID A04307. 2009. https://doi.org/10.1029/2008JA013801
  16. Karpachev A.T., Klimenko M.V., Klimenko V.V. Longitudinal variations of the ionospheric trough position // Adv. Space Res. V. 63. № 2. P. 950–966. 2019. https://doi.org/10.1016/j.asr.2018.09.038
  17. Klimenko M.V., Klimenko V.V., Karpachev A.T., Ratovsky K.G., Stepanov A.E. Spatial features of Weddell Sea and Yakutsk Anomalies in foF2 diurnal variations during high solar activity periods: Interkosmos-19 satellite and ground-based ionosonde observations, IRI reproduction and GSM TIP model simulation // Adv. Space Res. V. 55. № 8. P. 2020–2032. 2015. https://doi.org/10.1016/j.asr.2014.12.032
  18. Lee I.T., Wang W., Liu J.Y., Chen C.Y., Lin C.H. The ionospheric midlatitude trough observed by FORMOSAT-3/COSMIC during solar minimum // J. Geophys. Res. – Space. V. 116. № 6. ID A06311. 2011. https://doi.org/10.1029/2010JA015544
  19. Liu H., Thampi S.V., Yamamoto M. Phase reversal of the diurnal cycle in the midlatitude ionosphere // J. Geophys. Res. – Space. V. 115. № 1. ID A01305. 2010. https://doi.org/10.1029/2009JA014689
  20. Lin C.H., Liu J.Y., Cheng C.Z., Chen C.H., Liu C.H., Wang W., Burns A.G., Lei J. Three-dimensional ionospheric electron density structure of the Weddell Sea Anomaly // J. Geophys. Res. – Space. V. 114. № 2. ID A02312. 2009. https://doi.org/10.1029/2008JA013455
  21. Moffett R.J., Quegan S. The mid-latitude trough in the electron concentration of theionospheric F-layer: A review of observations and modeling // J. Atmos. Terr. Phys. V. 45. № 5. P. 315–343. 1983. https://doi.org/10.1016/S0021-9169(83)80038-5
  22. Muldrew D.B. F-layer ionization troughs deduced from Alouette data // J. Geophys. Res. V. 70. № 11. P. 2635–2650. 1965. https://doi.org/10.1029/JZ070i011p02635
  23. Nilsson H., Sergienko T.I., Ebihara Y., Yamauchi M. Quiet-time mid-latitude trough: influence of convection, field-aligned currents and proton precipitation // Ann. Geophys. V. 23. № 10. P. 3277–3288. 2005. https://doi.org/10.5194/angeo-23-3277-2005
  24. Penndorft R. The average ionospheric conditions over the Antarctic / Geomagnetism and Aeronomy: Studies in the Ionosphere, Geomagnetism and Atmospheric Radio Noise / Antarctic Research Ser., 4. Ed. A.H.Waynick. Washington, DC: American Geophysical Union. P. 1–45. 1965. https://doi.org/10.1029/AR004p0001
  25. Richards P.G., Meier R.R., Chen S., Dandenault P. Investigation of the causes of the longitudinal and solar cycle variation of the electron density in the Bering Sea and Weddell Sea anomalies // J. Geophys. Res. – Space. V. 123. № 9. P. 7825–7842. 2018. https://doi.org/10.1029/2018JA025413
  26. Rodger A.S., Moffett R.J, Quegan S. The role of ion drift in the formation of ionisation troughs in the mid-and high-latitude ionosphere – a review // J. Atmos. Terr. Phys. V. 54. № 1. P. 1–30. 1992. https://doi.org/10.1016/0021-9169(92)90082-V
  27. Rother M., Michaelis I. CH-ME-2-PLPT - CHAMP Electron density and temperature time series in low time resolution (Level 2). GFZ Data Services. 2019. https://doi.org/10.5880/GFZ.2.3.2019.007
  28. Vorobjev V.G., Yagodkina O.I., Katkalov Yu.V. Auroral Precipitation Model and its applications to ionospheric and magnetospheric studies // J. Atmos. Sol.-Terr. Phy. V. 102. P. 157–171. 2013. http://dx.doi.org/10.1016/j.jastp.2013.05.007
  29. Williams P.J.S., Jain A.R. Observations of the high latitude trough using EISCAT // J. Atmos. Terr. Phys. V. 48. № 5. P. 423–434. 1986. https://doi.org/10.1016/0021-9169(86)90119-4
  30. Yang N., Le H., Liu L., Zhang R. Statistical behavior of the longitudinal variations of the evening topside mid-latitude trough position in both northern and southern hemispheres // J. Geophys. Res. Space. V. 123. № 5. P. 3983–3997. 2018. https://doi.org/10.1029/2017JA025048

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2025