Using the Event Matrix for Chorus from the Lower Frequency Band to Determine Some Characteristics of Their Excitation Mechanism

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The work is devoted to studying the quantitative characteristics of the mechanism of excitation of VLF chorus emissions by means the analysis of high-resolution data from the Van Allen Probe spacecraft. A typical example of chorus with spectral forms in the lower frequency band (below half the electron cyclotron frequency) in the region of the local minimum of the magnetic field behind the plasmapause in the middle magnetosphere has been chosen. The results of wave field measurements in a high-resolution data channel are presented in the form of a rectangular event matrix, each row of which corresponds to one cycle of the wave process. In the event matrix, rows are selected that correspond to those implementation fragments that clearly characterize the natural source of short electromagnetic pulses origin. This made it possible to determine the complex eigen-values of the characteristic equation of the source at the linear stage of excitation of the chorus. The values of the roots of the characteristic equation, established by analyzing the observation data of chorus, correspond to implementation of the mechanism for exciting chorus by amplifying noise electromagnetic pulses in enhanced ducts.

Толық мәтін

Рұқсат жабық

Авторлар туралы

P. Bespalov

A.V. Gaponov-Grekhov Institute of Applied Physics of the Russian Academy of Sciences; HSE University

Хат алмасуға жауапты Автор.
Email: pbespalov@mail.ru
Ресей, Nizhny Novgorod; Nizhny Novgorod

O. Savina

HSE University

Email: onsavina@mail.ru
Ресей, Nizhny Novgorod

G. Neshchetkin

A.V. Gaponov-Grekhov Institute of Applied Physics of the Russian Academy of Sciences; HSE University

Email: gmheschetkin@edu.hse.ru
Ресей, Nizhny Novgorod; Nizhny Novgorod

Әдебиет тізімі

  1. Арцимович Л.А., Сагдеев Р.З. Физика плазмы для физиков. М.: Атомиздат, 313 с. 1979.
  2. Agapitov O., Blum L.W., Mozer F.S., Bonnell J.W., Wygant J. Chorus whistler wave source scales as determined from multipoint Van Allen Probe measurements // Geophys. Res. Lett. V. 44. N 6. P. 2634–2642. 2017. https://doi.org/10.1002/2017GL072701
  3. Bell T.F., Inan U.S., Hague N., Pickett J.S. Source regions of banded chorus // Geophys. Res. Lett. V. 36. N 11. ID L11101. 2009. https://doi.org/10.1029/2009GL037629
  4. Bespalov P., Savina O. An excitation mechanism for discrete chorus elements in the magnetosphere // Ann. Geophys. V. 36. N 5. P. 1201–1206. 2018. https://doi.org/10.5194/angeo-36-1201
  5. Bespalov P.A., Savina O.N. Excitation of chorus with small wave normal angles due to beam pulse amplifier (BPA) mechanism in density ducts // Ann. Geophys. V. 37. N 5. P. 819–824. 2019. https://doi.org/10.5194/angeo-37-819-2019
  6. Bespalov P.A., Savina O.N. Electromagnetic pulse amplification in a magnetized nearly stable plasma layer // Results Phys. V. 28. ID 104607. 2021. https://doi.org/10.1016/j.rinp.2021.104607
  7. Bespalov P.A., Savina O.N., Neshchetkin G.M. Hausdorf dimension of electromagnetic chorus emissions in their excitation region according to Van Allen probe data // Results Phys. V. 35. ID 105295. 2022. https://doi.org/10.1016/j.rinp.2022.105295
  8. Bortnik J., Thorne R.M., Meredith N.P. The unexpected origin of plasmaspheric hiss from discrete chorus emissions // Nature. V. 452. N 7183. P. 62–66. 2008. https://doi.org/10.1038/nature06741
  9. Chen H., Wang X., Chen L., Omura Y., Lu Q., Chen R., Xia Z., Gaoet X. Simulation of downward frequency chirping in the rising tone chorus element // Geophys. Res. Lett. V. 50. N 9. ID e2023GL103160. 2023. https://doi.org/10.1029/2023GL103160
  10. Fu X., Cowee M.M., Friedel R.H., Funsten H.O., Gary S.P., Hospodarsky G.B., Kletzing C., Kurth W., Larsen B.A., Liu K., MacDonald E.A., Min K., Reeves G.D., Skoug R.M., Winske D. Whistler anisotropy instabilities as the source of banded chorus: Van Allen Probes observations and Particle-in-Cell simulations // J. Geophys. Res. – Space. V. 119. N 10. P. 8288–8298. 2014. https://doi.org/10.1002/2014JA020364
  11. Gao X., Lu Q., Bortnik J., Li W., Chen L., Wang S. Generation of multiband chorus by lower band cascade in the Earth’s magnetosphere // Geophys. Res. Lett. V. 43. N 6. P. 2343–2350. 2016. https://doi.org/10.1002/2016GRL068313
  12. Haque N., Inan U.S., Bell T.F., Pickett J.S., Trotignon J.G., Facsko G. Cluster observations of whistler mode ducts and banded chorus // Geophys. Res. Lett. V. 38. N 18. ID L18107. 2011. https://doi.org/10.1029/2011GL049112
  13. Helliwell R.A. Whistlers and related ionospheric phenomena. Stanford, CA: Stanford University Press, 349 p. 1965.
  14. Helliwell R.A. The role of the Gendrin mode of VLF propagation in the generation of magnetospheric emissions // Geophys. Res. Lett. V. 22. N 16. P. 2095–2098. 1995. https://doi.org/10.1029/95GL02003
  15. Karpman V.I., Kaufman R.N. Whistler wave propagation in magnetospheric ducts (in the equatorial region) // Planet. Space Sci. V. 32. N 12. P. 1505–1511. 1984. https://doi.org/10.1016/0032-0633(84)90017-5
  16. Katoh Y., Omura Y. Electron hybrid code simulation of whistler mode chorus generation with real parameters in the Earth’s inner magnetosphere // Earth Planets Space. V. 6. N 1. ID 192. 2016. https://doi.org/10.1186/s40623-016-0568-0
  17. Kletzing C.A., Kurth W.S., Acuna M., et al. The Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS) on RBSP // Space Sci. Rev. V. 179. N 1–4. P. 127–181. 2013. https://doi.org/10.1007/s11214-013-9993-6
  18. Kurita S., Katoh Y., Omura Y., Angelopoulos V., Cully C.M., Le Conte O., Misawa H. THEMIS observation of chorus elements without a gap at half the gyrofrequency. J. Geophys. Res. – Space. V. 117. N 11. ID A11223. 2012. https://doi.org/10.1029/2012JA018076
  19. Meredith N.P., Cain M., Horne R.B., Thorne R.M., Summers D., Anderson R.R. Evidence for chorus-driven electron acceleration to relativistic energies from a survey of geomagnetically disturbed periods // J. Geophys. Res. – Space. V. 108. N 6. ID 1248. 2003. https://doi.org/10.1029/2002JA009764.
  20. Omura Y., Katoh Y., Summers D. Theory and simulation of the generation of whistler-mode chorus // J. Geophys. Res. – Space. V. 113. N 4. ID A04223. 2008. https://doi.org/10.1029/2007JA012622
  21. Summers D., Thorne R.M., Xiao F. Relativistic theory of wave-particle resonant diffusion with application to electron acceleration in the magnetosphere // J. Geophys. Res. – Space. V. 103. N 9. P. 20487–20500. 1998. https://doi.org/10.1029/98JA01740
  22. Trakhtengerts V.Y. Magnetosphere cyclotron maser: Backward wave oscillator generation regime // J. Geophys. Res. – Space. V. 100. N 9. P. 17205–17210. 1995. https://doi.org/10.1029/95JA00843
  23. Zhou C., Li W., Thorne R.M., Bortnik J., Ma Q., An X., Zhang X.-J., Angelopoulos V., Ni B., Gu X., Fu S., Zhao Z. Excitation of dayside chorus waves due to magnetic field line compression in response to interplanetary shocks // J. Geophys. Res. – Space. V. 120. N 10. P. 8327–8338. 2015. https://doi.org/10.1002/2015JA021530

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Spectral shapes of a typical chorus burst with low (a) and high (b) temporal resolution. The white line shows the half of the local electron cyclotron frequency.

Жүктеу (278KB)
3. Fig. 2. Oscillogram of the wave field, where asterisks show the results of consecutive measurements of the BU-component value.

Жүктеу (406KB)
4. Fig. 3. Asterisks correspond to known measurements of the BU component of the wave magnetic field, peak values are marked with squares (Uk, Uk + 1) and circles (Dk), the black line is the approximation from cosine fragments based on formulas (14) that we finally constructed.

Жүктеу (220KB)
5. Fig. 4. Reconstructed roots of the characteristic equation describing the linear stage of chorus excitation. The selection of these 12 clusters in the event matrix was based on keeping the values of γ, ω, φ in consecutive four or more rows with a spread of 10%.

Жүктеу (88KB)
6. Fig. 5. The result of additionally checking the fulfilment of the pattern (2) for one of the found roots of the characteristic equation.

Жүктеу (205KB)
7. Fig. 6. Roots of the characteristic equation (c), dynamic spectrum of the signal (b), distribution of roots (a, d).

Жүктеу (164KB)
8. Fig. 7. Dependence of the frequency ωv on the longitudinal component of the wave vector kz for whistling waves with dispersion equation (12). The dashed line corresponds to the equality of the longitudinal phase and group velocities.

Жүктеу (62KB)
9. Fig. 8. Result of numerical solution of the characteristic equation (13).

Жүктеу (86KB)
10. Fig. 9. Background plasma concentration along the spacecraft flight path. The chorus burst shown in Fig. 1b was observed in the interval marked by vertical lines.

Жүктеу (66KB)

© Russian Academy of Sciences, 2024