ИСПОЛЬЗОВАНИЕ МЕТОДА IIIVmrMLM ДЛЯ ПОДТВЕРЖДЕНИЯ И ПОИСКА НОВЫХ ГЕНОМНЫХ АССОЦИАЦИЙ У КУЛЬТУРНОГО НУТА

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Нут (Cicer arientinum) является важной сельскохозяйственной культурой, которая выращивается на Ближнем Востоке, в Средней Азии, Турции, Индии и на юге России и используется во множестве традиционных блюд. Уменьшение генетического разнообразия при доместикации, а также большая чувствительность культуры к абиотическим и биотическим стрессам наталкивают на мысль об использовании староместных сортов в селекционных программах по улучшению культуры. Новый метод IIIVmrMLM для полногеномного поиска ассоциаций позволил выявить новые, расположенные около или внутри важных генов, варианты в геномах образцов коллекции нута ВИР имени Н.И. Вавилова и провести оценку пригодности этих образцов для выращивания в условиях Кубани и Астрахани.

Об авторах

М. А Дук

Санкт-Петербургский политехнический университет Петра Великого; Физико-технический институт им. А.Ф.Иоффе

Email: duk@mail.ioffe.ru
Санкт-Петербург, Россия

А. А Канапин

Санкт-Петербургский политехнический университет Петра Великого

Санкт-Петербург, Россия

М. П Банкин

Санкт-Петербургский политехнический университет Петра Великого

Санкт-Петербург, Россия

М. Г Самсонова

Санкт-Петербургский политехнический университет Петра Великого

Санкт-Петербург, Россия

Список литературы

  1. Redden, R. J. and Berger J. D. History and origin of Chickpea. In Chickpea Breeding & Management. Ed. by S.S. Yadav, R. Redden, W. Chen, and B. Sharma (CABI, Wallingford, UK, 2007), pp. 1-13.
  2. Varshney R.K., Thudi M., Roorkiwal M., He W., Upadhyaya H. D., Yang W., Bajaj P., Cubry P., Rathore A., Jian J., Doddamani D., Khan A. W., Garg V., Chitikineni A., Xu D., Gaur P. M., Singh N. P., Chaturvedi S. K., Nadigatla G. V. P. R., Krishnamurthy L., Dixit G. P., Fikre A., Kimurto P. K., Sreeman S. M., Bharadwaj C., Tripathi S., Wang J., Lee S. H., Edwards D., Polavarapu K. K. B., Penmetsa R. V., Crossa J., Nguyen H. T., Siddique K. H. M., Colmer T. D., Sutton T., von Wettberg E., Vigouroux Y., Xu X., and Liu X.. Resequencing of 429 chickpea accessions from 45 countries provides insights into genome diversity, domestication and agronomic traits. Nat. Genet., 51, 857-864 (2019). doi: 10.1038/s41588-019-0401-3
  3. Thudi M., Chitikineni A., Liu X., He W., Roorkiwal M., Yang W., Jian J., Doddamani D., Gaur P. M., Rathore A., Samineni S., Saxena R. K., Xu D., Singh N. P., Chaturvedi S. K., Zhang G., Wang J., Datta S. K., Xu X., and Varshney R. K. Recent breeding programs enhanced genetic diversity in both desi and kabuli varieties of chickpea (Cicer arietinum L.). Sci. Rep., 6, 38636 (2016). doi: 10.1038/srep38636
  4. Kumar J. and Abbo S. Genetics of flowering time in chickpea and its bearing on productivity in semiarid environments. Adv. Agronomy, 72, 107-138 (2001). doi: 10.1016/S0065-2113(01)72012-3
  5. Gursky V. V, Kozlov K. N., Nuzhdin S. V, and Samsonova M. G. Dynamical modeling of the core gene network controlling flowering suggests cumulative activation from the FLOWERING LOCUS Tgene homologs in chickpea. Front Genet. 9, 547 (2018). doi: 10.3389/fgene.2018.00547
  6. Jha Ch. U., Kole Ch. P., and Singh P. N. QTL mapping for heat stress tolerance in chickpea ( Cicer arietinum L.). Legume Res., 44 (4), 382-387 (2019). doi: 10.18805/LR-4121
  7. Sokolkova A., Bulyntsev S. V, Chang P. L., Carrasquilla-Garcia N., Igolkina A. A., Noujdina N. V., von Wettberg E., Vishnyakova M. A., Cook D. R., Nuzhdin S. V, and Samsonova M. G. Genomic analysis of vavilov’s historic chickpea landraces reveals footprints of environmental and human selection. Int. J. Mol. Sci., 21, 3952 (2020). doi: 10.3390/ijms21113952
  8. Varshney R. K., Roorkiwal M., Sun Sh., Bajaj P., Chitikineni A., Thudi M., Singh N. P., Du X., Upadhyaya H. D., Khan A. W., Wang Y., Garg V, Fan G., Cowling W. A., Crossa J., Gentzbittel L., Voss-Fels K. P., Valluri V. K., Sinha P., Singh V. K., Ben C., Rathore A., Punna R., Singh M. K., Tar’an B., Bharadwaj Ch., Yasin M., Pithia M. S., Singh S., Soren Kh. R., Kudapa H., Jarquín D., Cubry Ph., Hickey L. T., Dixit G. P., Anne-Thuillet C., Hamwieh A., Kumar Sh., Deokar A. A., Chaturvedi S. K., Francis A., Howard R., Chattopadhyay D., Edwards D., Lyons E., Vigouroux Y., Hayes B. J., von Wettberg E., Datta S. K., Yang H., H. Nguyen T., Wang J., Siddique K. H. M., Mohapatra T., Bennetzen J. L., Xu X., Liu X. A chickpea genetic variation map based on the sequencing of 3,366 genomes, Nature , 599 (7886), 622-627 (2021). doi: 10.1038/s41586-021-04066-1
  9. Duk M. A., Kanapin A. A., Bankin M. P., Vishnyakova M. A., Bulyntsev S. V, and Samsonova M. G., Genome-wide association analysis in chickpea landraces and cultivars. Biophysics, 68, 952-963 (2023). doi: 10.1134/S0006350923060076
  10. Zhang Y.-M., Jia Z., and Dunwell J. M. Editorial: The application of new multi-locus GWAS methodologies in the genetic dissection of complex traits. Front. Plant Sci., 10, 100 (2019). doi: 10.3389/fpls.2019.00100
  11. Zhang Y.-W., Tamba C. L., Wen Y.-J., Li P., Ren W.-L., Ni Y.-L., Gao J., and Zhang Y.-M. mrMLM v4.0.2: An R platform for multi-locus genome-wide association studies. Genom. Proteom. Bioinform., 18, 481-487 (2020). doi: 10.1016/j.gpb.2020.06.006
  12. Wang J. and Zhang Z. GAPIT Version 3: Boosting power and accuracy for genomic association and prediction. Genom. Proteom. Bioinform., 19 (4), 629-640 (2021). doi: 10.1016/j.gpb.2021.08.005
  13. Li M., Zhang Y.-W., Xiang Y., Liu M.-H., and Zhang Y.-M. IIIVmrMLM: The R and C++ tools associated with 3VmrMLM, a comprehensive GWAS method for dissecting quantitative traits. Mol. Plant, 15 (8), 12511253 (2022). doi: 10.1016/j.molp.2022.06.002
  14. Zeng C. J. T., Lee Y.-R. J., and Liu B. The WD40 repeat protein NEDD1 functions in microtubule organization during cell division in Arabidopsis thaliana. Plant Cell, 21 (4), 1129-1140 (2009). doi: 10.1105/tpc.109.065953
  15. Jakobsson P.-J., Mancini J. A., Riendeau D., and Ford-Hutchinson A. W., Identification and characterization of a novel microsomal enzyme with glutathione-dependent transferase and peroxidase activities. J. Biol. Chem., 272 (36), 22934-22939 (1997). doi: 10.1074/jbc.272.36.22934
  16. Steinmetz-Spa J., Liu J., Singh R., Ekoff M., Boddul S., Tang X., Bergqvist F., Idborg H., Heitel P., Rönnberg E., Merk D., Wermeling F., Haeggström J. Z., Nilsson G., Steinhilber D., Larsson K., Korotkova M., and Jakobsson P.-J. J. Lipid Res., 63 (12), 100310, (2022). doi: 10.1016/j.jlr.2022.100310
  17. M. C. Rentel, D. Lecourieux, F. Ouaked, S. L. Usher, L. Petersen, H. Okamoto, H. Knight, S. C. Peck, C. S. Grierson, H. Hirt, and M. R Knight, OXI1 kinase is necessary for oxidative burst-mediated signalling in Arabidopsis. Nature, 427 (6977), 858-861 (2004). doi: 10.1038/nature02353
  18. Li X. F., Shen R. J., Liu P. L., Tang Z. C., and He Y. K. Molecular characters and morphological genetics of CAL gene in Chinese cabbage. Cell Res., 10 (1), 29-38 (2000). doi: 10.1038/sj.cr.7290033
  19. Ogawa E., Yamada Y., Sezaki N., Kosaka S., Kondo H., Kamata N., Abe M., Komeda Y., and Takahashi T. AT-ML1 and PDF2 Play a Redundant and Essential Role in Arabidopsis Embryo Development. Plant Cell Physiol., 56 (6), 1183-1192 (2015). doi: 10.1093/pcp/pcv045
  20. Rautengarten C., Usadel B., Neumetzler L., Hartmann J., Büssis D., and Altmann Th. A subtilisin-like serine protease essential for mucilage release from Arabidopsis seed coats. Plant J., 54 (3), 466-480 (2008). doi: 10.1111/j.1365-313X.2008.03437.x
  21. Tian G., Lu Q., Kohalmi S. E., Rothstein S. J., and Cui Y. Evidence that the Arabidopsis Ubiquitin C-terminal Hydrolases 1 and 2 associate with the 26S proteasome and the TREX-2 complex. Plant Signal. Behav., 7 (11), 1415-1419 (2012). doi: 10.4161/psb.21899
  22. Cockcroft Sh. and Garner K. Function of the phosphatidylinositol transfer protein gene family: is phosphatidylinositol transfer the mechanism of action? Crit. Rev. Biochem. Mol. Biol., 46 (2), 89-117 (2011). doi: 10.3109/10409238.2010.538664
  23. Kumar R., Raclaru M., Schüßeler T., Gruber J., Sadre R., Lühs W., Zarhloul K. M., Friedt W., Enders D., Frentzen M., and Veier D. Characterisation of plant tocopherol cyclases and their overexpression in transgenic Brassica napus seeds. FEBS Lett., 579, 1357-1364 (2005). doi: 10.1016/j.febslet.2005.01.030
  24. Bowles D., Lim E.-K., Poppenberger B., and Vaistij F.E. Glycosyltransferases of lipophilic small molecules. Annu. Rev. Plant Biol. 57, 567-597 (2006). doi: 10.1146/annurev.arplant.57.032905.105429
  25. P. Gao, Z. Xin, and Z.-L. Zheng, The OSU1/QUA2/TSD2-encoded putative methyltransferase is a critical modulator of carbon and nitrogen nutrient balance response in Arabidopsis. PLoS One, 3 (1), e1387 (2008). doi: 10.1371/journal.pone.0001387
  26. T. Lahari, Lazaro J., and Schroeder D. F. RAD4 and RAD23/HMR Contribute to Arabidopsis UV Tolerance. Genes, 9 (1), 8 (2018). doi: 10.3390/genes9010008
  27. Okanami M., Meshi T., and Iwabuchi M. Characterization of a DEAD box ATPase/RNA helicase protein of Arabidopsis thaliana. Nucl. Acids Res., 26 (11), 2638-2643 (1998). doi: 10.1093/nar/26.11.2638
  28. Meinke D. W. Genome-wide identification of EMBRYODEFECTIVE (EMB) genes required for growth and development in Arabidopsis. New Phytol., 226, 306-325 (2020). doi: 10.1111/nph.16071
  29. Rashotte A. M., Mason M. G., Hutchison C. E., Ferreira F. J., Schaller G. E., and Kieber J. J. A subset of Arabidopsis AP2 transcription factors mediates cytokinin responses in concert with a two-component pathway Proc. Natl. Acad. Sci. USA, 103 (29), 11081-11085 (2006). doi: 10.1073/pnas.060203810
  30. Hua D., Wang C., He J., Liao H., Duan Y., Zhu Z., GuoY., Chen Z., and Gong Z. A plasma membrane receptor kinase, GHR1, mediates abscisic acid- and hydrogen peroxide-regulated stomatal movement in Arabidopsis. Plant Cell, 24, 2546-2561 (2012). doi: 10.1105/tpc.112.100107
  31. Zhang Y., Xu Sh., Ding P., Wang D., Cheng Y. T., He J., Gao M., Xu F., Li Y., Zhu Z., Li X., and Zhang Y., Control of salicylic acid synthesis and systemic acquired resistance by two members of a plant-specific family of transcription factors. Proc. Natl. Acad. Sci. USA, 107 (42), 18220-18225 (2010). doi: 10.1073/pnas.1005225107
  32. Chen B., Wang J., G. Zhang, Liu J., Manan S., Hu H., and Zhao J. Two types of soybean diacylglycerol acyltransferases are differentially involved in triacylglycerol biosynthesis and response to environmental stresses and hormones. Sci. Rep., 6, 28541 (2016). doi: 10.1038/srep28541
  33. Zhu X., Pan T., Zhang X., Fan L., Quintero F. J., Zhao H., Su X., Li X., Villalta I., Mendoza I., Shen J., Jiang L., Pardo J. M., and Qiu Q.-Sh. K+ Efflux Antiporters 4, 5, and 6 Mediate pH and K+ Homeostasis in Endomembrane Compartments. Plant Physiol., 178 (4), 1657-1678 (2018). doi: 10.1104/pp.18.01053
  34. Li Y., Kabbage M., W. Liu, and Dickman M. B. Aspartyl protease-mediated cleavage of bag6 is necessary for autophagy and fungal resistance in plants. Plant Cell, 28, 233247 (2016). doi: 10.1105/tpc.15.00626
  35. Tanaka H., Kitakura S., Rakusova H., Uemura T., Feraru M. I., De Rycke R., Robert S., Kakimoto T., and Friml J. Cell polarity and patterning by pin trafficking through early endosomal compartments in Arabidopsis thaliana. PLoS Genetics, 9 (5), e1003540 (2013). doi: 10.1371/journal.pgen.1003540
  36. https://www.uniprot.org/uniprotkb/Q9SGI7/entry
  37. Saucet S. B., Ma Y., Sarris P. F., Furzer O. J., Sohn K. H., Jones J. D. Two linked pairs of Arabidopsis TNL resistance genes independently confer recognition of bacterial effector AvrRps4. Nat. Commun., 6, 6338 (2015). doi: 10.1038/ncomms7338, PMID: 25744164.
  38. Li H. and Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics, 25 (14), 1754-1760 (2009). doi: 10.1093/bioinformatics/btp324
  39. Tello D., Gonzalez-Garcia L. N., Gomez J., Zuluaga-Monares J. C., Garcia R., Angel R., Mahecha D., Duarte E., Leon M. D. R., Reyes F., Escobar-Velásquez C., Linares-Vásquez M., Cardozo N., and Duitama J. NGSEP 4: Efficient and accurate identification of orthogroups and whole-genome alignment. Mol. Ecol. Resour., 23 (3),712-724 (2023). doi: 10.1111/1755-0998.13737
  40. Danecek P., Auton A., Abecasis G., Albers C. A., Banks E., DePristo M. A., Handsaker R. E., Lunter G., Marth G. T., Sherry S. T., McVean G., and Durbin R. The variant call format and VCFtools. Bioinformatics, 27 (15), 2156-2158 (2011). doi: 10.1093/bioinformatics/btr330
  41. Bradbury P. J., Zhang Z., Kroon D. E., Casstevens T. M., Ramdoss Y., and Buckler E. S. TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics, 23 (19), 2633-2635 (2007). doi: 10.1093/bioinformatics/btm308
  42. Purcell S., Neale B., Todd-Brown K., Thomas L., Ferreira M. A., Bender D., Maller J., Sklar P., de Bakker P. I., Daly M. J., and Sham P. C. PLINK: a tool set for wholegenome association and population-based linkage analyses. Am. J. Hum.Genet., 81 (3), 559-575 (2007). doi: 10.1086/519795

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2024