RADIOINTERFEROMETRIC OBSERVATIONAL CAPABILITIES OF RELATIVISTIC JETS IN ACTIVE GALACTIC NUCLEI FOR THE “MILLIMETRON”

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The paper presents the analysis of observational capabilities of the Millimetron observatory’s very-long- baseline radio interferometry mode for active galactic nuclei to obtain two-dimensional images of these objects with high angular resolution. The observatory, with its 10-meter mirror, will conduct observations in the very long baseline radio interferometry mode together with ground telescopes in the frequency range of 43–345 GHz (wavelength range of 7–0.7 mm). Due to the orbit in the vicinity of the L2 Lagrange point of the Sun-Earth system, the maximum angular resolution will be up to 0.8 (43 GHz), 0.4 (100 GHz), 0.14 (230 GHz) and 0.1 (345 GHz) microarcseconds. Obtaining images with high angular resolution not only allows one to study the vicinity of nearby supermassive black holes, but also opens up new possibilities in studying the structure and dynamics of relativistic jets of active galactic nuclei and investigating the core shift effect. Based on the previously calculated nominal orbit for the Millimetron observatory, an analysis of the observational capabilities of 379 sources previously observed within the Radioastron mission scientific program was performed. The fundamental capabilities of obtaining radio images of 13 sources with a specific possible time and duration of such observations were demonstrated. The obtained results have broad practical significance in terms of further planning and development of the scientific program for the space-ground interferometer mode of the Millimetron observatory.

About the authors

A. G. Rudnitskiy

Astrospace Center of P. N. Lebedev Physical Institute of the Russian Academy of Sciences

Email: arud@asc.rssi.ru
Moscow, Russia

M. A. Shchurov

Astrospace Center of P. N. Lebedev Physical Institute of the Russian Academy of Sciences

Email: shurovma@lebedev.ru
Moscow, Russia

E. V. Kravchenko

Astrospace Center of P. N. Lebedev Physical Institute of the Russian Academy of Sciences

Email: khudchenko@asc.rssi.ru
Moscow, Russia

T. A. Syachina

Astrospace Center of P. N. Lebedev Physical Institute of the Russian Academy of Sciences

Email: syachina@asc.rssi.ru
Moscow, Russia

P. R Zapevalin

Astrospace Center of P. N. Lebedev Physical Institute of the Russian Academy of Sciences

Email: zapevalin@asc.rssi.ru
Moscow, Russia

References

  1. A.G. Rudnitskiy and M.A. Shchurov, Bull. Lebedev Physics Inst. 51(6), 214 (2024).
  2. I.D. Novikov, S.F. Likhachev, Y.A. Shchekinov, A.S. Andrianov, et al., Physics Uspekhi 64(4), 386 (2021).
  3. T.A. Syachina, A.G. Rudnitskiy, P.V. Mzhelskiy, M.A. Shchurov, and P.R. Zapevalin, arXiv:2410.20847 [astro-ph.IM] (2024).
  4. A.S. Andrianov, A.M. Baryshev, H. Falcke, I.A. Girin, et al., Monthly Not. Roy. Astron. Soc. 500(4), 4866 (2021), arXiv:2006.10120 [astro-ph.GA].
  5. S.F. Likhachev, A.G. Rudnitskiy, M.A. Shchurov, A.S. Andrianov, A.M. Baryshev, S.V. Chernov, and V.I. Kostenko, Monthly Not. Roy. Astron. Soc. 511(1), 668 (2022), arXiv:2108.03077[astro-ph.GA].
  6. Y.Y. Kovalev, N.S. Kardashev, K.V. Sokolovsky, P.A. Voitsik, et al., Adv. Space Research 65(2), 705 (2020), arXiv:1909.00785 [astro-ph.GA].
  7. A.G. Rudnitskiy, P.R. Zapevalin, P.V. Mzhelskiy, T.A. Syachina, and M.A. Shchurov, Bull. Lebedev Physics Inst. 48(9), 281 (2021).
  8. W.L.W. Sargent, Astrophys. J. 160, 405 (1970).
  9. S.-S. Lee, A.P. Lobanov, T.P. Krichbaum, A. Witzel, A. Zensus, M. Bremer, A. Greve, and M. Grewing, Astrophys. J. 136(1), 159 (2008), arXiv:0803.4035 [astro-ph].
  10. K.I. Kellermann, M.L. Lister, D.C. Homan, R.C. Vermeulen, et al., Astrophys. J. 609(2), 539 (2004), arXiv:astro-ph/0403320.
  11. E.S. Perlman, P. Padovani, P. Giommi, R. Sambruna, L.R. Jones, A. Tzioumis, and J. Reynolds, Astron. J. 115(4), 1253 (1998), arXiv:astro-ph/9801024.
  12. R.D. Cohen, H.E. Smith, V.T. Junkkarinen, and E.M. Burbidge, Astrophys. J. 318, 577 (1987).
  13. S.D. Hunter, D.L. Bertsch, B.L. Dingus, C.E. Fichtel, et al., Astrophys. J. 409, 134 (1993).
  14. Z. Shang, M.S. Brotherton, B.J. Wills, D. Wills, et al., Astrophys. J. Suppl. 196(1), id. 2 (2011), arXiv:1107.1855 [astro-ph.CO].
  15. G. Bruni, J.L. Gómez, L. Vega-García, A.P. Lobanov, et al., Astron. and Astrophys. 654, id. A27 (2021), arXiv:2101.07324 [astro-ph.GA].
  16. G. Bruni, J.L. Gómez, C. Casadio, A. Lobanov, et al., Astron. and Astrophys. 604, id. A111 (2017), arXiv:1707.01386 [astro-ph.GA].
  17. P. Marziani, J.W. Sulentic, D. Dultzin-Hacyan, M. Calvani, and M. Moles, Astrophys. J. Suppl. 104, 37 (1996).
  18. J.-Y. Kim, T.P. Krichbaum, A.E. Broderick, M. Wielgus, et al., Astron. and Astrophys. 640, id. A69 (2020).
  19. A. Fuentes, J.L. Gómez, J.M. Martí, M. Perucho, et al., Nature Astron. 7, 1359 (2023), arXiv:2311.01861 [astro-ph.HE].
  20. M. Stickel, H. Kuehr, and J.W. Fried, Astron. and Astrophys. Suppl. Ser. 97, 483 (1993).
  21. D.H. Jones, M.A. Read, W. Saunders, M. Colless, et al., Monthly Not. Roy. Astron. Soc. 399(2), 683 (2009), arXiv:0903.5451 [astro-ph.CO].
  22. M. Stickel, K. Meisenheimer, and H. Kuehr, Astron. and Astrophys. Suppl. Ser. 105, 211 (1994).
  23. Z.R. Weaver, S.G. Jorstad, A.P. Marscher, D.A. Morozova, et al., Astrophys. J. Suppl. 260(1), id. 12 (2022), arXiv:2202.12290 [astro-ph.HE].
  24. V. Junkkarinen, Publ. Astron. Soc. Pacific 96, 539 (1984).
  25. S. Jorstad, M. Wielgus, R. Lico, S. Issaoun, et al., Astrophys. J. 943(2), id. 170 (2023), arXiv:2302.04622 [astro-ph.HE].
  26. M. Lisakov, S. Jorstad, M. Wielgus, E.V. Kravchenko, et al., arXiv:2411.03446 [astro-ph.GA] (2024).
  27. D.P. Schneider, G.T. Richards, P.B. Hall, M.A. Strauss, et al., Astron. J. 139(6), id. 2360 (2010), arXiv:1004.1167 [astro-ph.CO].
  28. D. Sowards-Emmerd, R.W. Romani, P.F. Michelson, S.E. Healey, and P.L. Nolan, Astrophys. J. 626(1), 95 (2005), arXiv:astro-ph/0503115.
  29. D.C. Homan, M.H. Cohen, T. Hovatta, K.I. Kellermann, et al., Astrophys. J. 923(1), id. 67 (2021), arXiv:2109.04977 [astro-ph.HE].
  30. T. Hovatta, E. Valtaoja, M. Tornikoski, and A. Lähteenmäki, Astron. and Astrophys. 494(2), 527 (2009), arXiv:0811.4278 [astro-ph].
  31. V.S. Paliya, A. Domínguez, M. Ajello, A. Olmo-García, and D. Hartmann, Astrophys. J. Suppl. 253(2), id. 46 (2021), arXiv:2101.10849 [astro-ph.HE].
  32. J. Shangguan, L.C. Ho, and Y. Xie, Astrophys. J. 854(2), id. 158 (2018), arXiv:1802.08364 [astroph.GA].
  33. J.-H. Woo, C.M. Urry, R.P. van der Marel, P. Lira, and J. Maza, Astrophys. J. 631(2), 762 (2005), arXiv:astro-ph/0506316.
  34. A.P. Marscher, in Extragalactic Jets: Theory and Observation from Radio to Gamma Ray, Proc. of the conference held 21–24 May, 2007 in Girdwood, Alaska, USA, ASP Conf. Ser. 386, edited by T.A. Rector and D.S. De Young (San Francisco: ASP, 2008), p. 437.
  35. R.D. Blandford and A. Königl, Astrophys. J. 232, 34 (1979).
  36. A.B. Pushkarev, T. Hovatta, Y.Y. Kovalev, M.L. Lister, A.P. Lobanov, T. Savolainen, and J.A. Zensus, Astron. and Astrophys. 545, id. A113 (2012), arXiv:1207.5457 [astro-ph.HE].
  37. K.V. Sokolovsky, Y.Y. Kovalev, A.B. Pushkarev, and A.P. Lobanov, Astron. and Astrophys. 532, id. A38 (2011), arXiv:1103.6032 [astro-ph.CO].
  38. P.A. Voitsik, A.B. Pushkarev, Y.Y. Kovalev, A.V. Plavin, A.P. Lobanov, and A.V. Ipatov, Astron. Rep. 62(11), 787 (2018), arXiv:1809.10011 [astro-ph.GA].
  39. R.-S. Lu, K. Asada, T.P. Krichbaum, J. Park, et al., Nature 616(7958), 686 (2023), arXiv:2304.13252 [astro-ph.HE].
  40. J.C. Algaba, M. Nakamura, K. Asada, and S.S. Lee, Astrophys. J. 834(1), id. 65 (2017), arXiv:1611.04075 [astro-ph.HE].
  41. E.E. Nokhrina and A.B. Pushkarev, Monthly Not. Roy. Astron. Soc. 528(2), 2523 (2024), arXiv:2401.06698 [astro-ph.HE].
  42. E.V. Kravchenko, Y.Y. Kovalev, and K.V. Sokolovsky, Monthly Not. Roy. Astron. Soc. 467(1), 83 (2017), arXiv:1701.00271 [astro-ph.HE].
  43. A.S. Nikonov, Y.Y. Kovalev, E.V. Kravchenko, I.N. Pashchenko, and A.P. Lobanov, Monthly Not. Roy. Astron. Soc. 526(4), 5949 (2023), arXiv:2307.11660 [astro-ph.GA].
  44. R.C. Walker, V. Dhawan, J.D. Romney, K.I. Kellermann, and R.C. Vermeulen, Astrophys. J. 530(1), 233 (2000), arXiv:astro-ph/9909365.
  45. G. Giovannini, T. Savolainen, M. Orienti, M. Nakamura, et al., Nature Astron. 2, 472 (2018), arXiv:1804.02198 [astro-ph.GA].
  46. E. Ros, in Future Directions in High Resolution Astronomy: The 10th Anniversary of the VLBA, ASP Conf. Proc. 340, edited by J. Romney and M. Reid (San Francisco: ASP, 2005), p. 482, arXiv:astroph/0308265.
  47. J.M. Marcaide and I.I. Shapiro, Astrophys. J. 276, 56 (1984).
  48. W. Alef, in The Impact of VLBI on Astrophysics and Geophysics, IAU Symposium, held in Cambridge, MA, May 10–15, 1987; Proc. IAU Symp. 129, edited by M.J. Reid and J.M. Moran (Dordrecht: Kluwer Academic Publishers, 1988), p. 523.
  49. N.A. Kudryavtseva, D.C. Gabuzda, M.F. Aller, and H.D. Aller, Monthly Not. Roy. Astron. Soc. 415(2), 1631 (2011), arXiv:1106.0069 [astro-ph.HE].
  50. M.J. Rioja, R. Dodson, T. Jung, and B.W. Sohn, Astron. J. 150(6), id. 202 (2015), arXiv:1509.02621 [astro-ph.IM].
  51. T. Jung, R. Dodson, S.-T. Han, M.J. Rioja, et al., J. Korean Astron. Soc. 48(5), 277 (2015).
  52. M. Mościbrodzka, H. Falcke, H. Shiokawa, and C.F. Gammie, Astron. and Astrophys. 570, id. A7 (2014), arXiv:1408.4743 [astro-ph.HE].
  53. R. Fraga-Encinas, M. Mościbrodzka, and H. Falcke, arXiv:2312.12951 [astro-ph.HE] (2023).
  54. A.M. Kutkin, K.V. Sokolovsky, M.M. Lisakov, Y.Y. Kovalev, et al., Monthly Not. Roy. Astron. Soc. 437(4), 3396 (2014), arXiv:1307.4100 [astro-ph.HE].
  55. A.B. Pushkarev and Y.Y. Kovalev, Astron. and Astrophys. 544, id. A34 (2012), arXiv:1205.5559 [astroph.CO].
  56. M.L. Lister, M.F. Aller, H.D. Aller, M.A. Hodge, D.C. Homan, Y.Y. Kovalev, A.B. Pushkarev, and T. Savolainen, Astrophys. J. Suppl. 234(1), id. 12 (2018), arXiv:1711.07802 [astro-ph.GA].
  57. S. Jorstad and A. Marscher, Galaxies 4(4), id. 47 (2016).
  58. D.G. Nair, A.P. Lobanov, T.P. Krichbaum, E. Ros, et al., Astron. and Astrophys. 622, id. A92 (2019), arXiv:1808.09243 [astro-ph.GA].
  59. S. Xu, T. Jung, B. Zhang, M.H. Xu, et al., arXiv:2409.07309 [astro-ph.IM] (2024).
  60. C. Goddi, I. Martí-Vidal, H. Messias, G.C. Bower, et al., Astrophys. J. 910(1), id. L14 (2021), arXiv:2105.02272 [astro-ph.GA].
  61. L. Petrov and Y. Kovalev, arXiv:2410.11794 [astroph.IM] (2024).
  62. A. Rudnitskiy, P. Mzhelskiy, M. Shchurov, T. Syachina, and P. Zapevalin, Acta Astronautica 196, 29 (2022).
  63. E.E. Nokhrina and A.B. Pushkarev, Monthly Not. Roy. Astron. Soc. 528(2), 2523 (2024).

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 The Russian Academy of Sciences