Выбор методов кластеризации при машинном обучении для исследования экологических объектов по спутниковым данным
- Авторы: Воробьев В.Е.1, Мурынин А.Б.1,2, Рихтер А.А.1
-
Учреждения:
- НИИ “АЭРОКОСМОС”
- ФИЦ ИУ РАН
- Выпуск: № 5 (2024)
- Страницы: 126-137
- Раздел: ИСКУССТВЕННЫЙ ИНТЕЛЛЕКТ
- URL: https://kazanmedjournal.ru/0002-3388/article/view/681847
- DOI: https://doi.org/10.31857/S0002338824050088
- EDN: https://elibrary.ru/TARMZN
- ID: 681847
Цитировать
Аннотация
Представлен способ подготовки данных для машинного обучения для семантической сегментации информативных классов на изображениях, основанный на кластеризации для решения задач космического мониторинга импактных районов. Приведена классификация методов кластеризации по различным критериям. Обоснован выбор иерархических методов кластеризации как наиболее эффективных для работы с кластерами произвольной структуры и формы. Приведена общая схема расчета модели кластеризации, включающая помимо самой кластеризации процедуры тайлирования данных, оценки оптимальных параметров кластеризации, регистрации объектов, оценку качества данных. Показана схема подготовки данных для машинного обучения, включающая построение эталонной разметки, расчет модели кластеризации, коррекцию разметки, тестирование моделей кластеризации для разных информативных классов на новых изображениях.
Полный текст

Об авторах
В. Е. Воробьев
НИИ “АЭРОКОСМОС”
Автор, ответственный за переписку.
Email: vvorobev.aero@yandex.ru
Россия, Москва
А. Б. Мурынин
НИИ “АЭРОКОСМОС”; ФИЦ ИУ РАН
Email: amurynin@bk.ru
Россия, Москва; Москва
А. А. Рихтер
НИИ “АЭРОКОСМОС”
Email: urfin17@yandex.ru
Россия, Москва
Список литературы
- Визильтер Ю.В., Выголов О.В., Желтов С.Ю., Рубис А.Ю. Комплексирование многоспектральных изображений для систем улучшенного видения на основе методов диффузной морфологии // Изв. РАН. ТиСУ. 2016. № 4. С. 103–114.
- Желтов С.Ю., Себряков Г.Г., Татарников И.Б. Компьютерные технологии создания геопространственных трехмерных сцен, использующих комплексирование географической информации и синтезированных пользовательских данных // Авиакосмическое приборостроение. 2003. № 8. С. 2–10.
- Ишутин А.А., Кикин И.С., Себряков Г.Г., Сошников В.Н. Алгоритмы обнаружения, локализации и распознавания оптико-электронных изображений группы изолированных наземных объектов для инерциально-визирных систем навигации и наведения летательных аппаратов // Изв. РАН. ТиСУ. 2016. № 2. С. 85.
- Гвоздев О.Г., Козуб В.А., Кошелева Н.В., Мурынин А.Б., Рихтер А.А. Построение трехмерных моделей ригидных объектов по спутниковым изображениям высокого пространственного разрешения с использованием сверточных нейронных сетей // Исследования Земли из космоса. 2020. № 5. С. 78–96.
- Мандель И.Д. Кластерный анализ. М.: Финансы и статистика, 1988. 176 с. ISBN5–279–00050–7
- Shuyue G., Murray L. An Internal Cluster Validity Index Using a Distance based Separability Measure // IEEE32nd Intern. Conf. on Tools with Artificial Intelligence (ICTAI)At: Baltimore, MD, USA, 2020. URL: https://arxiv.org/pdf/2009.01328
- Евсеев А.В., Красовская Т.М. Закономерности формирования импактных зон в Арктике и Субарктике России // География и природные ресурсы. 1997. № 4.
- Евсеев А.В., Красовская Т.М. «Горячие точки» Российской Арктики. Экологические проблемы российской Арктики // Вестн. МГУ. 2010. № 5.
- Душкова Д.О., Евсеев А.В. Анализ техногенного воздействия на геосистемы Европейского Севера России // Арктика и Север. 2011. № 4. С. 1–34.
- Лукин Ю.Ф. «Горячие точки» Российской Арктики //Арктика и Север. 2013. № 11. C.19, 20.
- Программа ООН по окружающей среде. Диагностический анализ состояния окружающей среды арктической u1079 зоны Российской Федерации: Расширенное резюме. М.: Науч. мир, 2011.
- Бондур В.Г. Основы аэрокосмического мониторинга окружающей среды. Курс лекций. М.: Московский государственный университет геодезии и картографии, 2008. 546 с.
- Савиных В.П. Соломатин В.А. Оптико-электронные системы дистанционного зондирования. М.: Машиностроение, 2014. 431 с.
- Хабр. Кластеризация в ML: от теоретических основ популярных алгоритмов к их реализации с нуля на Python. URL: https://habr.com/ru/articles/798331/#dbscan
- Scikit-learn. Руководство пользователя URL: https://scikit-learn.ru/user_guide
- Рихтер А.А., Мурынин А.Б., Козуб В.А., Гвоздев О.Г. Модели представления экологических объектов по данным гиперспектральной съемки // Матер. 21-й Всероссийск. конф. с междунар. участием: Математические методы распознавания образов (ММРО). М.: Российская академия наук, 2023.
- Гвоздев О.Г., Козуб В.А., Мурынин А.Б., Рихтер А.А. Представление и обработка спектральных моделей по данным гиперспектральной съемки // Сб. тез. докл. 16-й Всероссийск. конф. «Современные проблемы дистанционного зондирования Земли из космоса». М.: ИКИ РАН, 2023. С. 19. URL: http:// http://conf.rse.geosmis.ru/files/books/2023/9992.htm
- Scipy. Руководство пользователя. Метод linkage. URL: https://docs.scipy.org/doc/scipy/tutorial/index.html
- Shanmugam S., Srinivasaperumal P. Spectral Matching Approaches in Hyperspectral Image Processing // Intern. J. Remote Sensing, 2014. V. 35. No. 24. P. 8217–8251. https://doi.org/10.1080/01431161.2014.980922. URL: https://www.researchgate. net/publication/270805406_Spectral_matching_approaches_in_hyperspectral_image_processing
- Jain A.K., Murty M.N., Flynn P.J. Data clustering: a review // Association for Computing Machinery, 1999. URL: https://www.sci-hub.ru/10.1145/331499.331504?ysclid=lzwss1aw3q662345026
- Ultralytics. Руководство пользователя. URL: https://docs.ultralytics.com/ru
- Гвоздев О.Г., Козуб В.А., Кошелева Н.В., Мурынин А.Б., Рихтер А.А. Нейросетевой метод построения трехмерных моделей ригидных объектов по спутниковым изображениям // Мехатроника, автоматизация, управление. 2021. Т. 22. № 1. С. 48–55.
- Игнатьев В.Ю., Матвеев И.А., Мурынин А.Б., Усманова А.А., Цурков В.И. Повышение пространственного разрешения панхроматических спутниковых изображений на основе генеративных нейросетей // Изв. РАН. ТиСУ. 2021. № 2. C.64–72. https://doi.org/10.31857/S0002338821020074
- Гвоздев О.Г., Мурынин А.Б., Козуб В.А., Пуховский Д.Ю., Рихтер А.А. Семантическая сегментация спутниковых изображений с использованием нейросетей для выявления антропогенных объектов в импактных районах Арктики // Матер. 20-й Междунар. конф. «Современные проблемы дистанционного зондирования Земли из космоса». М., 2022. С. 60. https://doi.org/10.21046/20DZZconf-2022a
Дополнительные файлы
