Choice of clustering methods in machine learning for the study of ecological objects based on satellite data
- Authors: Vorobyov V.E.1, Murynin A.B.1,2, Richter A.A.1
-
Affiliations:
- ISR “AEROCOSMOS”
- FRC CSC RAS
- Issue: No 5 (2024)
- Pages: 126-137
- Section: ARTIFICIAL INTELLIGENCE
- URL: https://kazanmedjournal.ru/0002-3388/article/view/681847
- DOI: https://doi.org/10.31857/S0002338824050088
- EDN: https://elibrary.ru/TARMZN
- ID: 681847
Cite item
Abstract
The paper presents a method for preparing data for machine learning for semantic segmentation of informative classes in images based on clustering for solving problems of space monitoring of impact areas. A classification of clustering methods by various criteria is given. The choice of hierarchical clustering methods as the most effective for working with clusters of arbitrary structure and shape is substantiated. A general scheme for calculating a clustering model is given, which includes, in addition to the clustering itself, procedures for data tiling, estimating the optimal clustering parameters, registering objects, and assessing the quality of the obtained data. A scheme for preparing data for machine learning is shown, including the construction of a reference markup, calculation of a clustering model, markup correction, and testing the obtained clustering models for different informative classes on new images.
Full Text

About the authors
V. E. Vorobyov
ISR “AEROCOSMOS”
Author for correspondence.
Email: vvorobev.aero@yandex.ru
Russian Federation, Moscow
A. B. Murynin
ISR “AEROCOSMOS”; FRC CSC RAS
Email: amurynin@bk.ru
Russian Federation, Moscow; Moscow
A. A. Richter
ISR “AEROCOSMOS”
Email: urfin17@yandex.ru
Russian Federation, Moscow
References
- Визильтер Ю.В., Выголов О.В., Желтов С.Ю., Рубис А.Ю. Комплексирование многоспектральных изображений для систем улучшенного видения на основе методов диффузной морфологии // Изв. РАН. ТиСУ. 2016. № 4. С. 103–114.
- Желтов С.Ю., Себряков Г.Г., Татарников И.Б. Компьютерные технологии создания геопространственных трехмерных сцен, использующих комплексирование географической информации и синтезированных пользовательских данных // Авиакосмическое приборостроение. 2003. № 8. С. 2–10.
- Ишутин А.А., Кикин И.С., Себряков Г.Г., Сошников В.Н. Алгоритмы обнаружения, локализации и распознавания оптико-электронных изображений группы изолированных наземных объектов для инерциально-визирных систем навигации и наведения летательных аппаратов // Изв. РАН. ТиСУ. 2016. № 2. С. 85.
- Гвоздев О.Г., Козуб В.А., Кошелева Н.В., Мурынин А.Б., Рихтер А.А. Построение трехмерных моделей ригидных объектов по спутниковым изображениям высокого пространственного разрешения с использованием сверточных нейронных сетей // Исследования Земли из космоса. 2020. № 5. С. 78–96.
- Мандель И.Д. Кластерный анализ. М.: Финансы и статистика, 1988. 176 с. ISBN5–279–00050–7
- Shuyue G., Murray L. An Internal Cluster Validity Index Using a Distance based Separability Measure // IEEE32nd Intern. Conf. on Tools with Artificial Intelligence (ICTAI)At: Baltimore, MD, USA, 2020. URL: https://arxiv.org/pdf/2009.01328
- Евсеев А.В., Красовская Т.М. Закономерности формирования импактных зон в Арктике и Субарктике России // География и природные ресурсы. 1997. № 4.
- Евсеев А.В., Красовская Т.М. «Горячие точки» Российской Арктики. Экологические проблемы российской Арктики // Вестн. МГУ. 2010. № 5.
- Душкова Д.О., Евсеев А.В. Анализ техногенного воздействия на геосистемы Европейского Севера России // Арктика и Север. 2011. № 4. С. 1–34.
- Лукин Ю.Ф. «Горячие точки» Российской Арктики //Арктика и Север. 2013. № 11. C.19, 20.
- Программа ООН по окружающей среде. Диагностический анализ состояния окружающей среды арктической u1079 зоны Российской Федерации: Расширенное резюме. М.: Науч. мир, 2011.
- Бондур В.Г. Основы аэрокосмического мониторинга окружающей среды. Курс лекций. М.: Московский государственный университет геодезии и картографии, 2008. 546 с.
- Савиных В.П. Соломатин В.А. Оптико-электронные системы дистанционного зондирования. М.: Машиностроение, 2014. 431 с.
- Хабр. Кластеризация в ML: от теоретических основ популярных алгоритмов к их реализации с нуля на Python. URL: https://habr.com/ru/articles/798331/#dbscan
- Scikit-learn. Руководство пользователя URL: https://scikit-learn.ru/user_guide
- Рихтер А.А., Мурынин А.Б., Козуб В.А., Гвоздев О.Г. Модели представления экологических объектов по данным гиперспектральной съемки // Матер. 21-й Всероссийск. конф. с междунар. участием: Математические методы распознавания образов (ММРО). М.: Российская академия наук, 2023.
- Гвоздев О.Г., Козуб В.А., Мурынин А.Б., Рихтер А.А. Представление и обработка спектральных моделей по данным гиперспектральной съемки // Сб. тез. докл. 16-й Всероссийск. конф. «Современные проблемы дистанционного зондирования Земли из космоса». М.: ИКИ РАН, 2023. С. 19. URL: http:// http://conf.rse.geosmis.ru/files/books/2023/9992.htm
- Scipy. Руководство пользователя. Метод linkage. URL: https://docs.scipy.org/doc/scipy/tutorial/index.html
- Shanmugam S., Srinivasaperumal P. Spectral Matching Approaches in Hyperspectral Image Processing // Intern. J. Remote Sensing, 2014. V. 35. No. 24. P. 8217–8251. https://doi.org/10.1080/01431161.2014.980922. URL: https://www.researchgate. net/publication/270805406_Spectral_matching_approaches_in_hyperspectral_image_processing
- Jain A.K., Murty M.N., Flynn P.J. Data clustering: a review // Association for Computing Machinery, 1999. URL: https://www.sci-hub.ru/10.1145/331499.331504?ysclid=lzwss1aw3q662345026
- Ultralytics. Руководство пользователя. URL: https://docs.ultralytics.com/ru
- Гвоздев О.Г., Козуб В.А., Кошелева Н.В., Мурынин А.Б., Рихтер А.А. Нейросетевой метод построения трехмерных моделей ригидных объектов по спутниковым изображениям // Мехатроника, автоматизация, управление. 2021. Т. 22. № 1. С. 48–55.
- Игнатьев В.Ю., Матвеев И.А., Мурынин А.Б., Усманова А.А., Цурков В.И. Повышение пространственного разрешения панхроматических спутниковых изображений на основе генеративных нейросетей // Изв. РАН. ТиСУ. 2021. № 2. C.64–72. https://doi.org/10.31857/S0002338821020074
- Гвоздев О.Г., Мурынин А.Б., Козуб В.А., Пуховский Д.Ю., Рихтер А.А. Семантическая сегментация спутниковых изображений с использованием нейросетей для выявления антропогенных объектов в импактных районах Арктики // Матер. 20-й Междунар. конф. «Современные проблемы дистанционного зондирования Земли из космоса». М., 2022. С. 60. https://doi.org/10.21046/20DZZconf-2022a
Supplementary files
