Interval estimation in discrete-time linear systems with parametric uncertainties

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The problem of interval observer design for discrete-time linear systems under the external disturbances, measurement noise, and parametric uncertainties is studied. The relation allowing designing the interval observer of minimal dimension estimating the set of admissible values of the specified linear vector function of the system state are derived. Theoretical results are illustrated by the example.

Sobre autores

A. Zhirabok

Far Eastern Federal University; Institute of Marine Technology Problems

Autor responsável pela correspondência
Email: zhirabok@mail.ru
Rússia, Vladivostok; Vladivostok

A. Zuev

Far Eastern Federal University; Institute of Marine Technology Problems

Email: zuev.al@dvfu.ru
Rússia, Vladivostok; Vladivostok

C. Kim

Far Eastern Federal University

Email: kim.ci@dvfu.ru
Rússia, Vladivostok

Bibliografia

  1. Жирабок А. Н., Зуев А. В., Ким Чхун Ир Метод построения интервальных наблюдателей для стационарных линейных систем // Изв. РАН. ТиСУ. 2022. № 4. С. 22-32.
  2. Ефимов Д. В., Раисии Т. Построение интервальных наблюдателей для динамических систем с неопределенностями // АиТ. 2016. № 2. С. 5-49.
  3. Khan A., Xie W, Zhang L., Liu L. Design and Applications of Interval Observers for Uncertain Dynamical Systems // IET Circuits Devices Syst. 2020. V. 14. P. 721-740.
  4. Kolesov N., Gruzlikov A., Lukoyanov E. Using Fuzzy Interacting Observers for Fault Diagnosis in Systems with Parametric Uncertainty // Proc. XII-th Inter. Sympos. «Intelligent Systems», INTELS’16.Moscow, Russia, 2016. P. 499-504.
  5. Кремлев А. С., Чеботарев С. Г. Синтез интервального наблюдателя для линейной системы с переменными параметрами // Изв. вузов. Приборостроение. 2013. Т. 56. №. 4. C. 42-46.
  6. Efimov D., Raissi T., Chebotarev S., Zolghadri A. Interval State Observer for Nonlinear Time Varying Systems // Automatica. 2013. V. 49. P. 200-206.
  7. Chebotarev S., Efimov D., Raissi T., Zolghadri A. Interval Observers for Continuous-time LPV Systems with L1/L2 Performance // Automatica. 2015. V. 51. P. 82-89.
  8. Mazenc F., Bernard O. Asymptotically Stable Interval Observers for Planar Systems with Complex Poles // IEEE Trans. Automatic Control. 2010. V. 55. №. 2. P. 523-527.
  9. Blesa J., Puig V., Bolea Y. Fault Detection Using Interval LPV Models in an Open-flow Canal // Control Engineering Practice. 2010. V. 18. P. 460-470.
  10. Zheng G., Efimov D., Perruquetti W. Interval State Estimation for Uncertain Nonlinear Systems // IFAC Nolcos 2013. Toulouse, France, 2013.
  11. Zhang K., Jiang B., Yan X., Edwards C. Interval Sliding Mode Based Fault Accommodation for Non-Minimal Phase LPV Systems with Online Control Application // Intern. J. Control. 2019. doi: 10.1080/00207179.2019.1687932.
  12. Жирабок А. Н., Зуев А. В., Шумский А. Е. Методы идентификации и локализации дефектов в линейных системах на основе скользящих наблюдателей // Изв. РАН. ТиСУ. 2019. № 6. С. 73–89.
  13. Жирабок А. Н., Зуев А. В., Шумский А. Е. Диагностирование линейных динамических систем: подход на основе скользящих наблюдателей // АиT. 2020. № 2. С. 18–35.
  14. Low X., Willsky A., Verghese G. Optimally Robust Redundancy Relations for Failure Detection in Uncertain Systems // Automatica. 1996. V. 22. P. 333-344.
  15. Филаретов В. Ф., Зуев А. В., Губанков А. С. Управление манипуляторами при выполнении различных технологических операций. М.: Наука, 2018.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2024