Comparison of the responses of a nonlinear oscillator to the worst-case disturbance consisting of two instantaneous impacts and the worst-case rectangular pulse disturbance

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

An oscillator with quadratic-law damping subjected to two successive instantaneous impacts is considered; the impacts have the same directions and their total impulse is given. The worst-case disturbance that maximizes the peak absolute value of the displacement of the oscillator’s body from the equilibrium position (taken as a performance index) is sought. The parameters of the two-impact disturbance that provides a maximum for the performance index are determined. A comparison of the worst-case two-impact disturbance with the worst-case rectangular pulse disturbance in terms of the value of the performance index is performed; both disturbances have the same impulse. It is shown that the worst-case rectangular pulse provides a larger value for the peak absolute value of the displacement of the oscillator than the two-impact disturbance does.

About the authors

V. A. Korneev

Ishlinsky Institute for Problems in Mechanics RAS

Author for correspondence.
Email: korneev@ipmnet.ru
Russian Federation, Moscow

References

  1. Sevin E., Pilkey W.. Optimum Shock and Vibration Isolation. Washington DC: Shock and Vibration Information Analysis Center, 1971. 162 p.
  2. Коловский М.З. Автоматическое управление виброзащитными системами. М.: Наука, 1976. 320 с.
  3. Болотник Н.Н. Оптимизация амортизационных систем. М.: Наука, 1983. 256 с.
  4. Balandin D. V., Bolotnik N. N. and Pilkey W. D. Optimal Protection from Impact, Shock, and Vibration. Amsterdam: Gordon and Breach Science Publishers, 2001. 436 p.
  5. Pilkey W.D., Balandin D.V., Bolotnik N.N., Crandal J.R. and Purtsezov S.V. Injury Biomechanics and Control: Optimal Protection from Impact. Hoboken (NJ): Wiley and Sons, Inc., 2010. 286 p.
  6. Ledezma-Ramirez D.F., Tapia-Gonzalez P.E., Ferguson N., Brennan M., Tang B.. Recent Advances in Shock Vibration Isolation: An Overview and Future Possibilities // Applied Mechanics Reviews. 2019. V. 71, № 6; https://doi.org/10.1115/1.4044190.
  7. Mezo I. The Lambert W Function: Its Generalizations and Applications. Boca Raton: Chapman and Hall/CRC, 2022. 252 p. https://doi.org/10.1201/9781003168102
  8. Lambert W function. URL: https://www.mathworks.com/help/symbolic/lambertw.html.
  9. Болотник Н.Н., Корнеев В.А. О наихудшем возмущении осциллятора с квадратичным демпфированием внешней силой с заданным интегралом // Изв. РАН. МТТ. 2024. № 1. С. 96–109.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences