Comparison of the responses of a nonlinear oscillator to the worst-case disturbance consisting of two instantaneous impacts and the worst-case rectangular pulse disturbance
- Autores: Korneev V.A.1
 - 
							Afiliações: 
							
- Ishlinsky Institute for Problems in Mechanics RAS
 
 - Edição: Nº 3 (2024)
 - Páginas: 85-93
 - Seção: OPTIMAL MANAGEMENT
 - URL: https://kazanmedjournal.ru/0002-3388/article/view/676416
 - DOI: https://doi.org/10.31857/S0002338824030084
 - EDN: https://elibrary.ru/UPTKYY
 - ID: 676416
 
Citar
Texto integral
Resumo
An oscillator with quadratic-law damping subjected to two successive instantaneous impacts is considered; the impacts have the same directions and their total impulse is given. The worst-case disturbance that maximizes the peak absolute value of the displacement of the oscillator’s body from the equilibrium position (taken as a performance index) is sought. The parameters of the two-impact disturbance that provides a maximum for the performance index are determined. A comparison of the worst-case two-impact disturbance with the worst-case rectangular pulse disturbance in terms of the value of the performance index is performed; both disturbances have the same impulse. It is shown that the worst-case rectangular pulse provides a larger value for the peak absolute value of the displacement of the oscillator than the two-impact disturbance does.
Palavras-chave
Texto integral
Sobre autores
V. Korneev
Ishlinsky Institute for Problems in Mechanics RAS
							Autor responsável pela correspondência
							Email: korneev@ipmnet.ru
				                					                																			                												                	Rússia, 							Moscow						
Bibliografia
- Sevin E., Pilkey W.. Optimum Shock and Vibration Isolation. Washington DC: Shock and Vibration Information Analysis Center, 1971. 162 p.
 - Коловский М.З. Автоматическое управление виброзащитными системами. М.: Наука, 1976. 320 с.
 - Болотник Н.Н. Оптимизация амортизационных систем. М.: Наука, 1983. 256 с.
 - Balandin D. V., Bolotnik N. N. and Pilkey W. D. Optimal Protection from Impact, Shock, and Vibration. Amsterdam: Gordon and Breach Science Publishers, 2001. 436 p.
 - Pilkey W.D., Balandin D.V., Bolotnik N.N., Crandal J.R. and Purtsezov S.V. Injury Biomechanics and Control: Optimal Protection from Impact. Hoboken (NJ): Wiley and Sons, Inc., 2010. 286 p.
 - Ledezma-Ramirez D.F., Tapia-Gonzalez P.E., Ferguson N., Brennan M., Tang B.. Recent Advances in Shock Vibration Isolation: An Overview and Future Possibilities // Applied Mechanics Reviews. 2019. V. 71, № 6; https://doi.org/10.1115/1.4044190.
 - Mezo I. The Lambert W Function: Its Generalizations and Applications. Boca Raton: Chapman and Hall/CRC, 2022. 252 p. https://doi.org/10.1201/9781003168102
 - Lambert W function. URL: https://www.mathworks.com/help/symbolic/lambertw.html.
 - Болотник Н.Н., Корнеев В.А. О наихудшем возмущении осциллятора с квадратичным демпфированием внешней силой с заданным интегралом // Изв. РАН. МТТ. 2024. № 1. С. 96–109.
 
Arquivos suplementares
				
			
						
						
					
						
						
									






