METHODS FOR DEVELOPING INTEGRATED HEATING AND COOLING SYSTEMS IN THE FAR NORTH

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The article proposes methods for developing integrated heating and cooling systems (IHCS) in the Far North to improve the efficiency of combined cooling, heat and power systems and to reduce harmful emissions. The IHCS technology may be relevant in the Far North regions with cold winters down to minus 65°C and hot summers up to plus 39°C. In such regions, combined heat and power plants based on gas turbine units are mainly built to provide winter heat loads, which leads to the emergence of a significant amount of waste heat in the summer due to the inefficient use of the heat of fuel combustion. Waste heat from thermal power plants can be used as cheap energy for the operation of absorption chillers for district cooling of consumers as part of the IHCS. The solution to the problem of developing such systems in the Far North requires the formation of a cooling load scenario taking into account local conditions. For the developed cooling load scenarios, a variant of the cold supply technology with the best technical and economic parameters is selected, taking into account the fulfillment of technical conditions and restrictions. The results of applying the methods to solve the problem of developing the IHCS of Yakutsk showed a reduction in the cooling price to 39% relative to electric air conditioners, an increase in the coefficient of use of fuel heat in the summer months to 55% and a reduction in CO2 emissions to 69 thousand tons per year.

About the authors

V. A. Stennikov

Melentiev Energy Systems Institute of the Siberian Branch of the RAS

Author for correspondence.
Email: sva@isem.irk.ru
Irkutsk, Russia

E. A. Barakhtenko

Melentiev Energy Systems Institute of the Siberian Branch of the RAS

Email: barakhtenko@isem.irk.ru
Irkutsk, Russia

N. V. Pavlov

V.P. Larionov Institute of the Physical-Technical Problems of the North of the Siberian Branch of the RAS

Email: pavlov_nv@iptpn.ysn.ru
Yakutsk, Russia

S. S. Vasilev

V.P. Larionov Institute of the Physical-Technical Problems of the North of the Siberian Branch of the RAS

Email: vasilievss_ykt@mail.ru
Yakutsk, Russia

References

  1. Фундаментальные исследования в Восточной Сибири: к 75-летию академической науки в Восточной Сибири. Новосибирск: Изд-во Сибирское отделение РАН, 2023. С. 242–283. https://doi.org/10.53954/9785605098607 EDN: HOOPFK
  2. Стенников В.А., Барахтенко Е.А., Соколов Д.В., Майоров Г.С. Автоматизация вычислений при проектировании интегрированной энергетической системы на основе ее цифрового двойника // Информационные технологии. 2024. Т. 30. № 3. С. 140–149. https://doi.org/10.17587/it.30.140-149 EDN: IOOMWD
  3. Стенников В., Пеньковский А. Рынок тепла: мировой опыт развития централизованного теплоснабжения // Энергетическая политика. 2021. № 10(164). С. 64–75. https://doi.org/10.46920/2409-5516_2021_10164_64 EDN: XQZKYH
  4. Trygg L., Amiri S. European perspective on absorption cooling in a combined heat and power system – A case study of energy utility and industries in Sweden // Applied Energy. 2007. V. 84. P. 1319–1337. https://doi.org/10.1016/j.apenergy.2006.09.016
  5. Wu D., Wang R.Z. Combined cooling, heating and power: a review // Progress in Energy and Combustion Science. 2006. V. 32. Iss. 5–6. P. 459–495. https://doi.org/10.1016/j.pecs.2006.02.001
  6. Gjoka K., Rismanchi B., Crawford R.H. Towards sustainable urban energy solutions: A multi-dimensional assessment framework for fifth-generation district heating and cooling systems // Energy and Buildings. 2025. V. 326. https://doi.org/10.1016/j.enbuild.2024.115071
  7. Васильев С.С. Имитационное моделирование интегрированных систем тепло- и хладоснабжения в условиях Крайнего Севера на примере города Якутска // Энергосбережение и водоподготовка. 2022. № 5(139). С. 39–46. EDN: LJXVOF
  8. Zhao T., Ahmad S.F., Agrawal M.K., Ahmad A.Y., Ghfar A.A., Valsalan P., Shah N.A., Gao X. Design and thermo-enviro-economic analyses of a novel thermal design process for a CCHP-desalination application using LNG regasification integrated with a gas turbine power plant // Energy. 2024. V. 295. https://doi.org/10.1016/j.energy.2024.131003
  9. Kuznik F., Frayssinet L., Roux J., Merlier L. Calculation of heating and cooling energy loads at the district scale: Development of MoDEM, a modular and technologically explicit platform // Sustainable Cities and Society. 2022. V. 83. https://doi.org/10.1016/j.scs.2022.103901
  10. Corcoran L., Saikia P., Carlos E., Abeysekera M. An effective methodology to quantify cooling demand in the UK housing stock // Applied Energy. 2025. V. 380. https://doi.org/10.1016/j.apenergy.2024.125002
  11. Ayou D.S., Wardhana M.F., Coronas A. Performance analysis of a reversible water/LiBr absorption heat pump connected to district heating network in warm and cold climates // Energy. 2023. V. 268. https://doi.org/10.1016/j.energy.2023.126679
  12. Muncan V., Mujan I., Macura D., Andelkovic A.S. The state of district heating and cooling in Europe – A literature-based assessment // Energy. 2024. V. 304. https://doi.org/10.1016/j.energy. 2024.132191
  13. Saladi J.K., Suresh R., Datt S.P. Diurnal performance investigation of solar integrated ejector-based Combined Cooling, Heating, and Power (CCHP) system for Indian climate // Applied Thermal Engineering. 2025. V. 263. https://doi.org/10.1016/j.applthermaleng.2024.125250
  14. Lepiksaar K., Kajandi G.M., Sukumaran S., Krupenski I., Kirs T., Volkova A. Optimizing solar energy integration in Tallinn's district heating and cooling systems // Smart Energy. 2025. V. 17. https://doi.org/10.1016/j.segy.2024.100166
  15. Saoud A., Bruno J.C., Boukhchanaa Y., Fellah A. Performance investigation and numerical evaluation of a single-effect double-lift absorption chiller // Applied Thermal Engineering. 2023. V. 227. https://doi.org/10.1016/j.applthermaleng.2023.120369
  16. Saoud A., Boukhchana Y., Bruno J.C., Fellah A. Thermodynamic investigation of an innovative solar-driven trigeneration plant based on an integrated ORC-single effect-double lift absorption chiller // Thermal Science and Engineering Progress. 2024. V. 50. https://doi.org/10.1016/j.tsep. 2024.102596
  17. Neri M., Guelpa E., Khor J.O., Romagnoli A., Verda V. Hierarchical model for design and operation optimization of district cooling networks // Applied Energy. 2024. V. 371. https://doi.org/10.1016/j.apenergy.2024.123667
  18. Neri M., Guelpa E., Verda V. Two-stage stochastic programming for the design optimization of district cooling networks under demand and cost uncertainty // Applied Thermal Engineering. 2023. V. 236. https://doi.org/10.1016/j.applthermaleng.2023.121594
  19. Васильев С.С., Барахтенко Е.А., Павлов Н.В., Соколов Д.В. Подход к проектированию трубопроводных систем централизованного хладоснабжения с технологией чиллер-фанкойл в резко континентальном климате с криолитозоной // Автоматизация и информатизация ТЭК. 2023. № 8(601). С. 48–56. https://doi.org/10.33285/2782-604X-2023–8(601)-48-56 EDN: OKXPNS
  20. Yin P., Alam T., Smrity A.M. Experimental evaluation and empirical modeling of hydronic room fan coil units with modulation control in cooling operation (ASHRAE RP-1741) // Journal of Building Engineering. 2025. V. 99. https://doi.org/10.1016/j.jobe.2024.111596

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences