Design of integrated energy systems based on their digital twins
- Authors: Stennikov V.A.1, Barakhtenko E.A.1, Sokolov D.V.1, Mayorov G.S.1
-
Affiliations:
- Melentiev Energy Systems Institute of Siberian Branch of the Russian Academy of Sciences
- Issue: No 1 (2025)
- Pages: 13-30
- Section: Articles
- URL: https://kazanmedjournal.ru/0002-3310/article/view/678651
- DOI: https://doi.org/10.31857/S0002331025010021
- ID: 678651
Cite item
Abstract
Design of integrated energy system (IES) is a complex problem, which is caused by the complex network configuration of these systems, a wide range of used equipment and mathematical models of IES subsystems. The digital twin allows one to model in virtual space various configurations of IES and to obtain the optimal variant of construction of the system under study. The paper proposes the principles of digital twin for design of IES. The authors present a methodological approach to the design of IES on the basis of its digital twin. The results of modelling of the energy supply system obtained on the software implementation of the components of the digital twin of the IES are presented.
Full Text

About the authors
V. A. Stennikov
Melentiev Energy Systems Institute of Siberian Branch of the Russian Academy of Sciences
Email: barakhtenko@isem.irk.ru
Russian Federation, Irkutsk
E. A. Barakhtenko
Melentiev Energy Systems Institute of Siberian Branch of the Russian Academy of Sciences
Author for correspondence.
Email: barakhtenko@isem.irk.ru
Russian Federation, Irkutsk
D. V. Sokolov
Melentiev Energy Systems Institute of Siberian Branch of the Russian Academy of Sciences
Email: barakhtenko@isem.irk.ru
Russian Federation, Irkutsk
G. S. Mayorov
Melentiev Energy Systems Institute of Siberian Branch of the Russian Academy of Sciences
Email: barakhtenko@isem.irk.ru
Russian Federation, Irkutsk
References
- Stennikov V., Barakhtenko E., Sokolov D., Zhou B. Current state of research on the energy management and expansion planning of integrated energy systems // Energy Reports, 2022. V. 8. P. 10025–10036.
- Voropai N.I., Stennikov V.A., Barakhtenko E.A. Integrated energy systems: Challenges, trends, philosophy // Studies on Russian Economic Development, 2017. V. 28. P. 492–499.
- Gelernter D. Mirror Worlds: Or the Day Software Puts the Universe in a Shoebox. How It Will Happen and What It Will Mean / Oxford University Press: Oxford, UK, 1993.
- Lim K.Y.H., Zheng P., Chen C. A state-of-the-art survey of Digital Twin: Techniques, engineering product lifecycle management and business innovation perspectives // Journal of Intelligent Manufacturing, 2020. V. 31. P. 1313–1337.
- Pileggi P., Verriet J., Broekhuijsen J., van Leeuwen C., Wijbrandi W., Konsman M. A Digital Twin for Cyber-Physical Energy Systems // In Proceedings of the 7th Workshop on Modeling and Simulation of Cyber-Physical Energy Systems, Montreal, QC, Canada, 5–15 April 2019; IEEE: New York, NY, USA, 2019.
- Zambrano V., Mueller-Roemer J., Sandberg M., Talasila P., Zanin D., Larsen P.G., Loeschner E., Thronicke W., Pietraroia D., Landolfi G., et al. Industrial digitalization in the industry 4.0 era: Classification, reuse and authoring of digital models on Digital Twin platforms // Array, 2022. V. 14. 100176.
- Katsidoniotaki E., Psarommatis F., Göteman M. Digital Twin for the Prediction of Extreme Loads on a Wave Energy Conversion System // Energies, 2022. V. 15. № 15. 5464.
- Agostinelli S., Cumo F., Guidi G., Tomazzoli C. Cyber-Physical Systems Improving Building Energy Management: Digital Twin and Artificial Intelligence // Energies, 2021. V. 14. № 8. 2338.
- Bányai Á., Bányai T. Real-Time Maintenance Policy Optimization in Manufacturing Systems: An Energy Efficiency and Emission-Based Approach // Sustainability, 2022. V. 14. № 17. 10725.
- Fathy Y., Jaber M., Nadeem Z. Digital Twin-Driven Decision Making and Planning for Energy Consumption // Journal of Sensor and Actuator Networks, 2021. V. 10. № 2. 37.
- Henzel J., Wróbel Ł., Fice M., Sikora M. Energy Consumption Forecasting for the Digital-Twin Model of the Building // Energies, 2022. V. 15. № 12. 4318.
- You M., Wang Q., Sun H., Castro I., Jiang J. Digital twins based day-ahead integrated energy system scheduling under load and renewable energy uncertainties // Applied Energy, 2022. V. 305. 117899.
- Воропай Н.И., Массель Л.В., Колосок И.Н., Массель А.Г. ИТ-инфраструктура для построения интеллектуальных систем управления развитием и функционированием систем энергетики на основе цифровых двойников и цифровых образов // Известия Российской академии наук. Энергетика, 2021. № 1. С. 3–13.
- Tao F., Zhang H., Liu A., Nee A.Y.C. Digital Twin in Industry: State-of-the-Art // IEEE Transactions on Industrial Informatics, 2019. V. 15. № 4. P. 2405–2415.
- Kasper L., Birkelbach F., Schwarzmayr P., Steindl G., Ramsauer D., Hofmann R. Toward a Practical Digital Twin Platform Tailored to the Requirements of Industrial Energy Systems // Applied Sciences, 2022. V. 12. № 14. 6981.
- Li H., Zhang T., Huang Y. Digital Twin Technology for Integrated Energy System and Its Application // In Proceedings of the 1st International Conference on Digital Twins and Parallel Intelligence), Beijing, China, 15 July – 15 August 2021; IEEE: New York, NY, USA, 2021.
- Chen Y., Chen Q., Gao J., Li Z., Chen X. Hardware-in-loop based Digital Twin Technology for Integrated Energy System: A Case Study of Guangyang Island in Chongqing // In Proceedings of the 5th International Electrical and Energy Conference, Nangjing, China, 27–29 May 2022; IEEE: New York, NY, USA, 2022.
- Bai H., Yuan Z., Tang X., Liu J., Yang W., Pan S., Xue Y., Liu W. Automatic Modeling and Optimization for The Digital twin of a Regional Multi-energy System // In Proceedings of the Power System and Green Energy Conference, Shanghai, China, 25–27 August 2022; IEEE: New York, NY, USA, 2022.
- Kannan K., Arunachalam N. A Digital Twin for Grinding Wheel: An Information Sharing Platform for Sustainable Grinding Process // Journal Manufacturing Science Engineering, 2019. V. 141. № 2. 021015.
- Moreno A., Velez G., Ardanza A., Barandiaran I., de Infante Á.R., Chopitea R. Virtualisation process of a sheet metal punching machine within the Industry 4.0 vision // International Journal on Interactive Design and Manufacturing, 2017. V. 11. P. 365–373.
- Singh S., Shehab E., Higgins N., Fowler K., Reynolds D., Erkoyuncu J.A., Gadd P. Data management for developing digital twin ontology model // Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2020. V. 235. № 14. P. 2323–2337.
- Steindl G., Stagl M., Kasper L., Kastner W., Hofmann R. Generic Digital Twin Architecture for Industrial Energy Systems // Applied Sciences, 2020. V. 10. № 24. 8903.
- Steinmetz C., Rettberg A., Ribeiro F.G.C., Schroeder G., Pereira C.E. Internet of Things Ontology for Digital Twin in Cyber Physical Systems // In Proceedings of the VIII Brazilian Symposium on Computing Systems Engineering, Salvador, Brazil, 5–8 November 2018; IEEE: New York, NY, USA, 2018.
- Массель Л.В., Ворожцова Т.Н. Онтологический подход к построению цифровых двойников объектов и систем энергетики // Онтология проектирования, 2020. Т. 10. № 3(37). С. 327–337.
- Azure Digital Twins [Электронный ресурс]. URL: https://docs.microsoft.com/en-us/azure/digital-twins/ (дата обращения: 01.09.2022).
- GE, PREDIX [Электронный ресурс]. URL: https://www.ge.com/digital/applications/digital-twin (дата обращения: 01.09.2022).
- Power Analytics [Электронный ресурс]. URL: https://www.poweranalytics.com/paladin-software/ (дата обращения: 01.09.2022).
- ABB, ABBAbility [Электронный ресурс]. URL: https://new.abb.com/abb-ability/ru (дата обращения: 01.09.2022).
- Хасилев В.Я. Элементы теории гидравлических цепей // Известия АН СССР. Энергетика и транспорт, 1964, № 1. C. 69–88.
- Stennikov V., Barakhtenko E., Mayorov G., Sokolov D., Zhou B. Coordinated management of centralized and distributed generation in an integrated energy system using a multi-agent approach // Applied Energy, 2022. V. 309. 118487.
- Yorke R. Electric Circuit Theory / Pergamon Press, Oxford, UK, 1981.
- Brambilla M., Cabot J., Wimmer M. Model-driven software engineering in practice // In Synthesis Lectures on Software Engineering; Morgan & Claypool: Kentfield, CA, USA, 2012.
- Silva da A.R. Model-driven engineering: A survey supported by the unified conceptual model // Computer Languages, Systems & Structures, 2015. V. 43. 139–155.
- Gruber T.R. A translation approach to portable ontology specifications // Knowledge Acquisition, 1993. V. 5. № 2. 199–220.
- Staab S., Studer R. Handbook on Ontologies, 2nd ed. / Springer-Verlag: Heidelberg, Germany, 2009.
- Stennikov V.A., Barakhtenko E.A., Sokolov D.V. Development of Information and Technology Platform for Optimal Design of Heating Systems // In Proceedings of the 7th Scientific Conference on Information Technologies for Intelligent Decision Making Support. 28–29 May 2019, Ufa, Russia; Atlantis Press: Paris, France, 2019.
- Hazzard K., Bock J. Metaprogramming in .NET / Manning Publications: Shelter Island, NY, USA, 2013.
- Lämmel R. Software Languages: Syntax, Semantics, and Metaprogramming / Springer: Cham, Switzerland, 2018.
Supplementary files
