Melting conditions for porous heat-generating device with active cooling: approximate analytical solution
- Authors: Donskoy I.G.1
-
Affiliations:
- Melentiev Energy Systems Institute SB RAS
- Issue: No 6 (2024)
- Pages: 62-70
- Section: Articles
- URL: https://kazanmedjournal.ru/0002-3310/article/view/677476
- DOI: https://doi.org/10.31857/S0002331024060049
- ID: 677476
Cite item
Abstract
In thermal engineering applications (for example, when studying the operating conditions of thermal storage and electrochemical devices), problems often arise related to the phase transition front propagation in thermally stressed elements. This paper considers the solution of a simplified problem of heating element flow cooling. To this end, analytical estimates were obtained for the critical values of heat release intensity corresponding to the onset of melting and complete melting of the porous sample. The results are compared with numerical calculations.
Keywords
Full Text

About the authors
I. G. Donskoy
Melentiev Energy Systems Institute SB RAS
Author for correspondence.
Email: donskoy.chem@mail.ru
Russian Federation, Irkutsk
References
- Sarbu I., Sebachievici C. A Comprehensive Review of Thermal Energy Storage // Sustainability. 2018. V. 10. P. 191. doi: 10.3390/su10010191
- Mallick S., Gayen D. Thermal behaviour and thermal runaway propagation in lithium-ion battery systems – A critical review // Journal of Energy Storage. 2023. V. 62. P. 106894. doi: 10.1016/j.est.2023.106894
- Panchenko S.V., Bobkov V.I., Fedulov A.S., Chernovalova M.V. Mathematical modelling of thermal and physical-chemical processes during sintering // Non-ferrous Metals. 2018. No. 2. P. 50. doi: 10.17580/nfm.2018.02.09
- Thevenin P.O., Ersson A.G., Kusar H.M.J., Menon P.G., Jaras S.G. Deactivation of high temperature combustion catalysts // Applied Catalysis A: General. 2001. V. 212. P. 189. doi: 10.1016/S0926-860X(00)00846-2
- Puszynski J., Jayaraman V.K., Hlavacek V. A Stefan problem for exothermic non-catalytic reactions // International Journal of Heat and Mass Transfer. 1985. V. 28. No. 6. P. 1237. doi: 10.1016/0017-9310(85)90133-4
- Tripathi P., Rao L. Single particle and packed bed combustion characteristics of high ash and high plastic content refuse derived fuel // Fuel. 2022. V. 308. P. 121983. doi: 10.1016/j.fuel.2021.121983
- Sajjadi M., Azaiez J. Heat and mass transfer in melting porous media: Stable miscible displacements // International Journal of Heat and Mass Transfer. 2015. V. 88. P. 926. doi: 10.1016/j.ijheatmasstransfer.2015.05.017
- Вулис Л.А. Тепловой режим горения. М.-Л.: Государственное энергетическое издательство, 1954. 288 с.
- Lutsenko N.A. Numerical modeling of unsteady gas flow through porous heat-evolutional objects with partial closure of the object’s outlet // International Journal of Heat and Mass Transfer. 2014. V. 72. P. 602. doi: 10.1016/j.ijheatmasstransfer.2014.01.046
- Саженков С.А. Исследование задачи Дарси-Стефана о фазовых переходах в насыщенном пористом грунте // ПМТФ. 2008. Т. 49. № 4. С. 81.
- Barbu V., Ciotir I., Danaila I. Existence and Uniqueness of Solution to the Two-Phase Stefan Problem with Convection // Applied Mathematics & Optimization. 2021. V. 84. P. 123. doi: 10.1007/s00245-021-09764-w
- Crepeau J.C., Siahpush A., Spotten B. On the Stefan problem with volumetric energy generation // Heat and Mass Transfer. 2009. V. 46. P. 119. doi: 10.1007/s00231-009-0550-5
- Alsulami R.A., Zope T.M., Premnath K., Aljaghtham M. Convectively cooled solidification in phase change materials in different configurations subject to internal heat generation: Quasi-steady analysis // Applied Thermal Engineering. 2023. V. 221. P. 119849. doi: 10.1016/j.applthermaleng.2022.119849
- Донской И.Г. Влияние лучистых теплопотерь на условия плавления материала с внутренним тепловыделением // Изв. ВУЗов. Проблемы энергетики. 2024. Т. 26. № 3. С. 173. doi: 10.30724/1998-9903-2024-26-3-173-183
- Donskoy I. The critical conditions of filtration flow blocking in a porous channel with phase transitions // Journal of Heat and Mass Transfer Research. 2024. doi: 10.22075/JHMTR.2024.34469.1570 (in press)
- Gunn D.J. Diffusion and chemical reaction in catalysis and absorption // Chemical Engineering Science. 1967. V. 22. No. 11. P. 1439. doi: 10.1016/0009-2509(67)80071-X
- Донской И.Г. Задача Стефана в тепловыделяющем цилиндрическом образце с граничными условиями третьего рода: расчет времени расплавления // iPolytech Journal. 2024. Т. 28. № 2. С. 290. doi: 10.21285/1814-3520-2024-2-290-302
- Быков В.И., Цыбенова С.Б. Динамика фазовых переходов первого рода // ДАН. 2009. Т. 429. № 3. С. 347.
- Lutsenko N.A. Numerical model of two-dimensional heterogeneous combustion in porous media under natural convection or forced filtration // Combustion Theory and Modelling. 2018. V. 22. No. 2. P. 359. doi: 10.1080/13647830.2017.1406617
- Crepeau J., Siahpush A.S. Solid–liquid phase change driven by internal heat generation // Comptes Rendus Mecanique. 2012. V. 340. P. 471. doi: 10.1016/j.crme.2012.03.004
Supplementary files
