Model for integral codes for calculating containment thermohydraulics in severe accidents at nuclear power plants with a water coolant

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The article describes a model for calculating the containment thermal in severe accidents at nuclear power plants with a water coolant. The model is implemented in the SOCRAT integral code in the form of a CONT_TH module, which allows performing self-consistent calculation of parameters in a VVER reactor plant and a containment during a severe accident. In conjunction with other modules of the SOCRAT code, a realistic calculation of the transfer of radioactive substances to the containment is provided, which is necessary to calculate source term into the environment when justifying the safety of nuclear power plants, including probability safety assessment level 2. With a slight adaptation, the model can be used to calculate the parameters of containment in a water-cooled NPP as part of other integral codes.

Texto integral

Acesso é fechado

Sobre autores

D. Tomashchik

Nuclear Safety Institute of the Russian Academy of Sciences

Autor responsável pela correspondência
Email: tdyu@ibrae.ac.ru
Rússia, Moscow

Bibliografia

  1. Bolshov L. A., Dolganov K. S., Kiselev A. E., Strizhov V. F. Results of SOCRAT code development, validation and applications for NPP safety assessment under severe accidents, Nuclear Engineering and Design, V. 341, 2019, P. 326–345.
  2. Аттестационный паспорт программы для ЭВМ СОКРАТВ1/В2, № 564, Москва: Федеральная служба по экологическому, технологическому и атомному надзору (Ростехнадзор), 2022.
  3. Лабунцов Д. А., Ягов В. В. Механика двухфазных систем: Учебное пособие для вузов – М.: Издательство МЭИ, 2000.
  4. Caretto L.S., Gosman A.D., Patankar S.V., Spalding D.B. Two calculation procedures for steady, three-dimensional flows with recirculation. In: Cabannes, H., Temam, R. (eds) Proceedings of the Third International Conference on Numerical Methods in Fluid Mechanics. Lecture Notes in Physics, vol 19. Springer, Berlin, Heidelberg, 1973.
  5. Wang J., Cao X., Meng Z., Ding M. A Hybrid Semi-implicit Method of 1D Transient Compressible Flow for Thermal-Hydraulic Analysis of (V)HTR Gas Turbine Systems. Frontiers Media S.A., series: Frontiers in Energy Research. 2018.
  6. Самарский А. А., Николаев Е. С. Методы решения сеточных уравнений. – Москва: Наука, 1978.
  7. Кириллов П.Л., Юрьев Ю.С., Бобков В.П. Справочник по теплогидравлическим расчетам. М.: Энергоатомиздат, 1990.
  8. Sparrow E.M., Eichhorn R. and Gregg J.L. Combined Forced and Free Convection in a Boundary Layer Flow, The Physics of Fluids, Vol. 2, No. 3, pp. 319–328, 1959.
  9. MELCOR Computer Code Manuals Rev.2, Vol.2. NUREG/CR-6119, 2000.
  10. Ачеркан Н.С. Справочник машиностроителя. Том 2, Москва, 1955.
  11. Ермолаев А.А. Теоретические основы теплотехники. Государственное энергетическое издательство, Москва 1957.
  12. The Electronics Handbook, Second Edition, Editor: Jerry C. Whitaker, Technical Press, Morgan Hill, California, USA, 2005 ISBN: 9780849318894.
  13. Кутателадзе С.С. Теплопередача и гидродинамическое сопротивление, Москва: Энергоатомиздат, 1990.
  14. Lloyd J.R., Moran W.R. Natural Convection Adjacent to Horizontal Surface of Various Planforms, J. Heat Transfer 96, 1974.
  15. Бершнайдер С. Свойства газов и жидкостей, Москва: “Химия”, 1966, 537 с.
  16. Рид Р., Праусниц Дж., Шервуд Т. Свойства газов и жидкостей, 3-е издание, Ленинград: ”Химия“, 1982, 592 с.
  17. Hirschfelder J.О., Bird R.B, Spotz E.L. The transport properties of gases and gaseous mixtures. Naval Research Laboratory, University of Wisconsin, Madison, Wisconsin 1948.
  18. Mason E.A., Monchick L. Transport Properties of PolarGas Mixtures. The Journal of Chemical Physics, vol. 36, 1962.
  19. Paganelli C.V., Kurata F.K. Diffusion of water vapor in binary and ternary gas mixtures at increased pressures. Respiration Physiology, vol. 30, 1977.
  20. Рогов В.П. Коэффициент сопротивления частиц и капель. Научные труды Дальрыбвтуза, 19, Владивосток 2007.
  21. Melissari B.В., Argyropoulos S.A. Development of a heat transfer dimensionless correlation for spheres immersed in a wide range of Prandtl number fluids. Int. J. of Heat and Mass Transfer, vol. 48, 2005.
  22. Пажи Д.Г., Галустов В.С. Основы техники распыливания жидкостей. Москва, Химия 1984.
  23. Revised Release on the IAPWS Industrial Formulation 1997 for the Thermodynamic Properties of Water and Steam, IAPWS R7-97 2012.
  24. Wagner W., Kretzschmar H.J. International Steam Tables. Second Edition. Springer, 2008.
  25. Lindsay A.L., Bromley L.A. Thermal Conductivity of Gas Mixtures, Industrial and Engineering Chemistry, 1950, Vol. 42, No. 8, pp. 1508–1511.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Example of a nodalization scheme for the CONT_TH module.

Baixar (28KB)
3. Fig. 2. Movement of a sprinkler drop.

Baixar (6KB)
4. Fig. 3. Calculation step of the CONT_TH module.

Baixar (34KB)

Declaração de direitos autorais © Российская академия наук, 2024