Technologies of the Integrated Development of Hydrogeothermal Resources of the North Caucasian Region

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

This paper focuses on the technologies of the integrated development of high-parametric geothermal brines with steam release. They differ from each other depending on initial parameters. Such way of brine utilization will make it possible to transform thermal energy to electrical power along with significant increasing its salinity that contributes to chemical components extraction. The opportunity is considered of this technology application in the Tarumovka geothermal field with electric power generation in steam-turbine and binary power plants, and consequent obtaining valuable mineral components. The geothermal and biogas technologies are given proposing integrated utilization of thermal water for various applications. Such systems make it possible to use resource potential of geothermal well and biomass that will result in improvement of economic and environmental situation in the North Caucasus region.

Full Text

Restricted Access

About the authors

A. B. Alkhasov

Institute for Geothermal Research and Renewable Energy of JIHT RAS

Author for correspondence.
Email: alkhasova.dzhamilya@mail.ru
Russian Federation, Makhachkala

D. А. Alkhasova

Institute for Geothermal Research and Renewable Energy of JIHT RAS

Email: alkhasova.dzhamilya@mail.ru
Russian Federation, Makhachkala

References

  1. Алхасов А.Б. Геотермальная энергетика: проблемы, ресурсы, технологии // М.: Физматлит, 2008. 376 с.
  2. Алхасов А.Б., Алхасова Д.А., Алишаев М.Г., Рамазанов А.Ш., Рамазанов М.М. Освоение геотермальной энергии // М.: Физматлит, 2022. 320 с.
  3. Томаров Г.В., Никольский А.И., Семенов В.Н., Шипков А.А. Геотермальная энергетика. М.: Теплоэнергетик. 2015. 304 с.
  4. John W. Lund, Gerald W. Huttrer, Aniko N. Toth. Characteristics and trends in geothermal development and use, 1995 to 2020 // Geothermics, 2022. V. 105. https://doi.org/ doi.org/10.1016/j.geothermics.2022.102522
  5. Томаров Г.В., Шипков А.А. Краткий обзор современного состояния и тенденций развития геотермальной энергетики // Теплоэнергетика. 2023. № 2. С. 37–46.
  6. Shyi–Min Lu. A global review of enhanced geothermal system (EGS). Renew Sustain Energy Rev 81(2):2902–2921. 2018. https://doi.org/ 10.1016/j.rser.2017.06.097
  7. Rybach L. Status and Prospects of Geothermal Energy // Proc. World Geothermal Congress- 2010, Bali, Indonezia, 25–29 April 2010.
  8. Lund J.W.,Toth A.N. Direct utilization of geothermal energy 2020: Worldwide review // Proc. of the World Geothermal Congress 2020+1/ Reykjavik, Ictland, Apr.–Oct.2021.
  9. Алхасов А.Б., Алхасова Д.А. Комплексное использование низкопотенциальных термальных вод юга России для тепло–, водоснабжения и решения экологических проблем // Теплоэнергетика. 2019. № 5. С. 82–88.
  10. Алхасов А.Б., Алхасова Д.А., Рамазанов А.Ш., Каспарова М.А. Перспективы комплексного освоения высокопараметрических геотермальных рассолов // Теплоэнергетика. 2015. № 6. С. 11–17.
  11. Алхасов А.Б., Алхасова Д.А., Рамазанов А.Ш., Каспарова М.А. Технологии освоения высокоминерализованных геотермальных ресурсов // Теплоэнергетика. 2017. № 9. С. 17–24.
  12. Александров А.А., Орлов К.А., Очков В.Ф. Теплофизические свойства рабочих веществ теплоэнергетики: справочник // М.: Издательский дом МЭИ, 2017. 226 с.
  13. Алхасов А.Б., Алхасова Д.А. Теплообменники для утилизации тепла высокотемпературных геотермальных рассолов // Теплоэнергетика. 2018. № 3. C. 36–41.
  14. Алхасов А.Б., Алхасова Д.А., Рамазанов А.Ш., Каспарова М.А. Перспективы освоения высокотемпературных высокоминерализованных ресурсов Тарумовского геотермального месторождения // Теплоэнергетика. 2016. № 6. С. 25–30.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Technological scheme of complex development of high–temperature geothermal brines: 1 – geothermal well; 2 – separator–steam separator; 3 – steam turbine; 4 – generator; 5 – heat exchanger; 6 – evaporator–superheater; 7 - turbine on a low-boiling working fluid; 8 – condenser; 9 – circulation pump; 10 – chilled distillate; 11 – plant for the extraction of chemical components; 12 – desalinated water.

Download (20KB)
3. Fig. 2. Technological scheme of complex development of high–temperature geothermal brines: 1 – geothermal well; 2 – separator–steam separator; 3 – steam turbine; 4 – generator; 5, 6 – heat exchanger; 7 – turbine on a low–boiling working fluid; 8 – condenser; 9 - circulation pump; 10 - for various purposes; 11 – a plant for the extraction of chemical components; 12 – desalinated water.

Download (16KB)
4. Fig. 3. Technological scheme of complex development of high–temperature geothermal brines: 1 – geothermal well; 2 – separator–steam separator; 3 – steam turbine; 4 – generator; 5, 6 – heat exchanger; 7 – turbine on a low–boiling working fluid; 8 – condenser; 9 - circulation pump; 10 - for water management purposes; 11 – plant for the extraction of chemical components; 12 – desalinated water; 13 – supply of low–temperature coolant; 14 - for thermal energy needs.

Download (18KB)
5. Fig. 4. The scheme of integrated development of hydrogeothermal resources: 1 – well; 2 – binary geo-power plant; 3 – methane tank; 4 – gas tank; 5 – GTU; 6 – heat exchanger; 7 – block for growing protein–vitamin biomass; 8 – greenhouse; 9 – fish breeding pool; 10 – disinfected fertilizers; 11 – discharge of waste water; 12 – cold water supply; 13 – discharge of heated water.

Download (12KB)
6. Fig. 5. Combined technological scheme for the utilization of biomass and geothermal energy: 1 – production wells; 2 – GCTP; 3 – methane tank; 4 – gas tank; 5 – GTU; 6 – GPP; 7 – block for the cultivation of protein–vitamin biomass; 8 – injection wells; 9 – disinfected fertilizers.

Download (11KB)

Copyright (c) 2024 Российская академия наук