Numerical study of convective heat transfer between core and steam generator in severe accident with loss of heat removal to secondary side of VVER reactors

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The article discusses the possibility of overheating and failure of heat exchanging tubes in VVER steam generators in the course of severe accidents. The importance of this phenomenon is due to the risk of bypassing the containment by radioactive substances. Natural convection of superheated steam in the hot leg of the main circulation loop is considered as the major mechanism for heat transfer from the core to steam generators. To model convective flows and steam temperature distribution in a system, three-dimensional CFD codes are used. The simulation results demonstrate that the intensity of convective heat transfer from reactor to hot collector of steam generator is insufficient for significant heating and catastrophic degradation of strength of the heat exchange tubes material.

Негізгі сөздер

Толық мәтін

Рұқсат жабық

Авторлар туралы

K. Dolganov

Nuclear Safety Institute of the Russian Academy of Sciences

Хат алмасуға жауапты Автор.
Email: dolganov@ibrae.ac.ru
Ресей, Moscow

A. Krutikov

Gidropress Experimental Design Bureau

Email: dolganov@ibrae.ac.ru
Ресей, Podolsk

A. Nikolaeva

Nuclear Safety Institute of the Russian Academy of Sciences

Email: dolganov@ibrae.ac.ru
Ресей, Moscow

Әдебиет тізімі

  1. Bayless P.D. Analysis of natural circulation during a Surry station blackout using SCDAP/RELAP5, NUREG/CR-5214 (EGG-2547), EC&G Idaho Inc., September 1988.
  2. Domanus H.M. and Sha W.T. Analysis of Natural-Convection Phenomena in a 3-Loop PWR During a TMLB’ Transient using the COMMIX code, NUREG/CR-5070, ANL-87-54, Argonne National Laboratory, January 1988.
  3. Di Marzo М., Salehi M.A., Almenas K. Primary system transient heating in a severe accident scenario, Scientia Iranica, Vol.2, No.1, Sharif University of Technology, March 1995.
  4. Stewart W.A. et al. Natural Circulation Experiments for PWR Degraded Core Accidents, EPRI Report NP-6324-D, Westinghouse Electric Corporation, 1989.
  5. Stewart W.A. et al., Natural Circulation Experiments for PWR High Pressure Accidents, EPRI Project No. RP2177-5 Final Report, Westinghouse Electric Corporation, July 1992.
  6. Martinez G.M., et. а1. Independent review of SCDAP/RELAP5 Natural Circulation Calculations, SAND91-2089, Sandia National Laboratories, Jan. 1994.
  7. Park Jae Hong et al. PWR Hot Leg Natural Circulation Modeling with MELCOR Code, Proc. of the Korean Nuclear Society Autumn Meet., Taegu, Korea, October 1997.
  8. Knudson D.L., Ghan L.S., and Dobbe C.A. SCDAP/RELAP5 Evaluation Of The Potential For Steam Generator Tube Ruptures As A Result Of Severe Accidents In Operating Pressurized Water Reactors, INEEL/EXT-98-00286, Revision 1, INEEL, September 1998
  9. Bayless R.D., et al. Severe Accident Natural Circulation Studies at the INEL, NUREG/CR-6285 INEL-94/0016, Idaho National Engineering Laboratory, 1995.
  10. Risk Assessment of Severe Accident-Induced Steam Generator Tube Rupture, SGTR Severe Accident Working Group, NUREG-1570, U.S. NRC, March 1998.
  11. Boyd C.F., Hardesty K. CFD Analysis of 1/7th Scale Steam Generator Inlet Plenum Mixing During a PWR Severe Accident, NUREG-1781, U.S. NRC, 2003.
  12. Boyd C.F., Helton D.M., et Hardesty K. CFD Analysis of Full-Scale Steam Generator Inlet Plenum Mixing During a PWR Severe Accident, NUREG-1788, U.S. NRC, 2004.
  13. Boyd C.F. and Armstrong K.W. Computational Fluid Dynamics Analysis of Natural Circulation Flows in a Pressurized-Water Reactor Loop under Severe Accident Conditions, NUREG-1922, U.S. NRC, March 2010.
  14. Boyd C. CFD Prediction of Severe Accident Natural Circulation Flows in a Combustion Engineering Pressurized-Water Reactor Loop, ADAMS Accession No. ML16068A170, International Topical Meeting on Advances in Thermal Hydraulics 2016, New Orleans, LA, June 2016.
  15. Steam Generator Tube Integrity Risk Assessment, Volume 1: General Methodology, Revision 1 to TR-107623-V1, Final Report, EPRI, Palo Alto, March 2002.
  16. Sancaktar S., et al. Consequential SGTR Analysis for Westinghouse and Combustion Engineering Plants with Thermally Treated Alloy 600 and 690 Steam Generator Tubes, NUREG-2195, U.S. NRC, May 2018.
  17. Choi Dae Kyung, et al. Numerical Study of Natural Circulation Flow in Reactor Coolant System during a Severe Accident, Science and Technology of Nuclear Installations, Volume 2022, Article ID 4531040, https://doi.org/10.1155/2022/4531040.
  18. Kang Hyung Seok, et al. CFD Analysis for a Westinghouse Natural Circulation Experiment during Severe Accidents, Transactions of the Korean Nuclear Society Virtual Spring Meeting, July 9-10, 2020.
  19. Kim Sung Il, et al. Analysis of steam generator tube rupture accident for OPR 1000 nuclear power plant, Nuclear Engineering and Design, Volume 382, 2021, 111403, https://doi.org/10.1016/j.nucengdes.2021.111403.
  20. High-temperature characteristics of stainless steels, American Iron and Steel Institute, Designer’s Handbook series No. 9004, 2020.
  21. Нормы расчета на прочность оборудования и трубопроводов атомных энергетических установок ПНАЭ Г-7-002-86, М.: Энергоатомиздат, 1989 г.
  22. Окопный Ю.А., Радин В.П., Чирков В.П. Механика материалов и конструкций. М: Машиностроение, 2001.
  23. Долганов К.С., Томащик Д.Ю., Киселев А.Е., Капустин А.В. Анализ возможности массового разрушения теплообменных труб ПГ при тяжелых авариях на РУ ВВЭР-1200/491, ИБРАЭ РАН, Москва.
  24. Morozov V.B., Kiselev A.E., Kiselev A.A., Dolganov K.S., Tomashchik D.Yu., and Krasnoperov S.N. Issues of Safety Assessment of New Russian NPP Projects in View of Current Requirements for the Probability of a Large Release, Nuclear Technology, 207:2, 204–216, 2021 DOI:

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Comparison of yield strength and tensile strength of AISI 321 [20] and 08Cr18Ni10T [21] steels as a function of temperature

Жүктеу (137KB)
3. Fig. 2. Time dependence of the flow rate at the hot string inlet

Жүктеу (198KB)
4. Fig. 3. Dependence of pressure in the hot string on time

Жүктеу (194KB)
5. Fig. 4. Geometry with superimposed computational grid

Жүктеу (107KB)
6. Fig. 5. Current lines in steady-state mode

Жүктеу (107KB)
7. Fig. 6. Change of steam temperature in the centre of the collector at flow rates at the inlet to the hot string 1 and 2 kg/sec

Жүктеу (129KB)
8. Fig. 7. Calculated area grid for the STAR CCM+ code

Жүктеу (103KB)
9. Fig. 8. Temperature in a section of the calculation area (2500 s of calculation)

Жүктеу (102KB)
10. Fig. 9. Current lines and velocity vector (2500 s calculation)

Жүктеу (96KB)
11. Fig. 10. Temperature profile along line ‘a’ (2500 s of calculation)

Жүктеу (133KB)
12. Fig. 11. Temperature profile along line ‘b’ (2500 s of calculation)

Жүктеу (141KB)
13. Fig. 12. Variation of steam temperature in the centre of the GHG collector in the STAR CCM+ calculation. Green line - OpenFoam calculations, red line - STAR CCM+ calculations assuming ideal gas, blue line - STAR CCM+ calculations using NIST properties, black line - using NIST properties and considering collector metal

Жүктеу (286KB)
14. Fig. 13. Variation of steam temperature at the centre of the PG collector and PG collector metal temperature in the STAR CCM+ calculation. Blue line - vapour temperature, NIST properties, black line - vapour temperature, NIST properties including collector metal, dashed line - collector metal temperature

Жүктеу (158KB)
15. Fig. 14. Temperature profile along the line ‘c’ - collector axis (2500 s of calculation)

Жүктеу (135KB)

© Российская академия наук, 2024