Liquid Biopsy of Plasma and Cerebrospinal Fluid for the Detection of Extracellular Tumor DNA as a Tool for Glioma Diagnosis and Genotyping: A Cross-Sectional Observational Pilot Study



Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

BACKGROUND: Liquid biopsy is a promising method used for analyzing tumor-derived genetic material in plasma and cerebrospinal fluid. These biological fluids are characterized by low concentrations of such material. Pre-amplification is hypothesized to enhance detection sensitivity.

AIM: This study aimed to assess the detectability and content of extracellular tumor genetic material in plasma and cerebrospinal fluid from patients with glioma using droplet digital polymerase chain reaction with and without pre-amplification.

METHODS: The study investigated plasma and cerebrospinal fluid samples from 25 patients newly diagnosed with glioma who were scheduled for partial or total tumor resection. DNA was extracted from 2.5–5 mL of cerebrospinal fluid and 5 mL of plasma. Each sample was examined by droplet digital polymerase chain reaction for IDH1 R132H and TERT promoter (C228T and C250T) mutations. Mutation analysis was performed on both isolated and pre-amplified DNA. The false-positive threshold was determined through experiments that analyzed wild-type samples and no-template controls. Statistical analysis was conducted using the Mann–Whitney and Wilcoxon tests for paired data and Spearman’s correlation test.

RESULTS: The sensitivity and specificity of cerebrospinal fluid liquid biopsy without pre-amplification were 14.3% and 100% for grade 1–3 gliomas, respectively, and 50% and 100% for grade 4 gliomas. After pre-amplification, the values were 57.1% and 50% for grade 1–3 gliomas and 75% and 80% for grade 4 gliomas. Extracellular DNA levels showed a significant correlation with tumor volume, malignancy grade, and contrast enhancement pattern (i.e., none, moderate/heterogeneous, intense, and ring-shaped).

CONCLUSION: Liquid biopsy with DNA pre-amplification demonstrates limited sensitivity and specificity in glioma detection. However, it enables assessment of key tumor characteristics, which may be useful for therapeutic decision-making.

About the authors

Tagir I. Rakhmatullin

Lomonosov Moscow State University

Author for correspondence.
Email: tagir.rakhmatullin@internet.ru
ORCID iD: 0000-0002-4601-3478
SPIN-code: 7068-1678

intern-researcher

Russian Federation, Moscow

Mark Jain

Lomonosov Moscow State University

Email: jain-mark@outlook.com
ORCID iD: 0000-0002-6594-8113
SPIN-code: 3783-4441

Cand. Sci. (Biology), senior research associate

Russian Federation, Moscow

Larisa M. Samokhodskaya

Lomonosov Moscow State University

Email: slm@fbm.msu.ru
ORCID iD: 0000-0001-6734-3989
SPIN-code: 5404-6202

MD, Cand. Sci. (Medicine), assistant professor

Russian Federation, Moscow

Ivan M. Alekseev

National Medical and Surgical Center named after N.I. Pirogov

Email: alexeev.im@yandex.ru
ORCID iD: 0000-0001-8107-3065
SPIN-code: 9947-1988

neurosurgeon

Russian Federation, Moscow

Andrey A. Zuev

National Medical and Surgical Center named after N.I. Pirogov

Email: mosbrain@gmail.com
ORCID iD: 0000-0003-2974-1462
SPIN-code: 9377-4574

MD, Dr. Sci. (Medicine), Professor

Russian Federation, Moscow

References

  1. Ostrom QT, Price M, Neff C, et al. CBTRUS Statistical Report: Primary Brain and Other Central Nervous System Tumors Diagnosed in the United States in 2016-2020. Neuro-Oncology. 2023;25(Supplement_4):iv1–iv99. doi: 10.1093/NEUONC/NOAD149
  2. Miller KD, Ostrom QT, Kruchko C, et al. Brain and other central nervous system tumor statistics, 2021. Ca Cancer J Clin. 2021;71(5):381–406. doi: 10.3322/CAAC.21693 EDN: IFDGOH
  3. Weller M, Van den bent M, Preusser M, et al. EANO guidelines on the diagnosis and treatment of diffuse gliomas of adulthood. Nat Rev Clin Oncol. 2020;18(3):170–186. doi: 10.1038/s41571-020-00447-z EDN: JXVXQX
  4. Louis DN, Perry A, Wesseling P, et al. The 2021 WHO Classification of Tumors of the Central Nervous System: a summary. Neuro-Oncology. 2021;23(8):1231–1251. doi: 10.1093/NEUONC/NOAB106 EDN: BJWXKV
  5. Juratli TA, Cahill DP, Mccutcheon IE. Determining optimal treatment strategy for diffuse glioma: the emerging role of IDH mutations. Expert Rev Anticancer Ther. 2015;15(6):603–606. doi: 10.1586/14737140.2015.1047351 EDN: UQRFZV
  6. Alnahhas I. Molecular Testing in Gliomas: What is Necessary in Routine Clinical Practice? Curr Oncol Reports. 2024;26(11):1277–1282. doi: 10.1007/s11912-024-01602-w EDN: NQXASU
  7. Zacher A, Kaulich K, Stepanow S, et al. Molecular Diagnostics of Gliomas Using Next Generation Sequencing of a Glioma-Tailored Gene Panel. Brain Pathol. 2016;27(2):146–159. doi: 10.1111/bpa.12367 EDN: YVSLHX
  8. Rakhmatullin TI, Jain M, Samokhodskaya LM, Zuev AA. Liquid biopsy of gliomas with detection of extracellular tumor nucleic acids. J Clin Pr. 2024;15(3):82–95. doi: 10.17816/clinpract629883 EDN: XFYLDH
  9. Tunthanathip T, Madteng S. Factors associated with the extent of resection of glioblastoma. Precis Cancer Med. 2020;3:12–12. doi: 10.21037/PCM.2020.01.01 EDN: FISEEU
  10. Alhalabi OT, Dao Trong P, Kaes M, et al. Repeat surgery of recurrent glioma for molecularly informed treatment in the age of precision oncology: A risk-benefit analysis. J Neurooncol. 2024;167(2):245–255. doi: 10.1007/S11060-024-04595-5/TABLES/2 EDN: NQQGRD
  11. Jain M, Atayan D, Rakhmatullin T, et al. Cell-Free Tumor DNA Detection-Based Liquid Biopsy of Plasma and Bile in Patients with Various Pancreatic Neoplasms. Biomedicines. 2024;12(1):220. doi: 10.3390/BIOMEDICINES12010220 EDN: OPLSCE
  12. Diplas BH, Liu H, Yang R, et al. Sensitive and rapid detection of TERTpromoter and IDHmutations in diffuse gliomas. Neuro-Oncology. 2018;21(4):440–450. doi: 10.1093/NEUONC/NOY167 EDN: BTWJRQ
  13. Karacam B, Elbasan EB, Khan I, et al. Role of cell-free DNA and extracellular vesicles for diagnosis and surveillance in patients with glioma. J Liq Biopsy. 2024;4:100142. doi: 10.1016/j.jlb.2024.100142 EDN: ZFFAMT
  14. Riviere-Cazaux C, Dong X, Mo W, et al. Longitudinal Glioma Monitoring via Cerebrospinal Fluid Cell-Free DNA. Clin Cancer Res. 2024;31(5):881–889. doi: 10.1158/1078-0432.CCR-24-1814 EDN: AJMCHO
  15. Palande V, Detroja R, Gorohovski A, et al. A liquid biopsy platform for detecting gene-gene fusions as glioma diagnostic biomarkers and drug targets. bioRxiv. 2020. doi: 10.1101/2020.02.25.963975
  16. Bagley SJ, Nabavizadeh SA, Mays JJ, et al. Clinical Utility of Plasma Cell-Free DNA in Adult Patients with Newly Diagnosed Glioblastoma: A Pilot Prospective Study. Clin Cancer Res. 2020;26(2):397–407. doi: 10.1158/1078-0432.CCR-19-2533 EDN: GVFLPZ
  17. Orzan F, De bacco F, Lazzarini E, et al. Liquid Biopsy of Cerebrospinal Fluid Enables Selective Profiling of Glioma Molecular Subtypes at First Clinical Presentation. Clin Cancer Res. 2023;29(7):1252–1266. doi: 10.1158/1078-0432.CCR-22-2903 EDN: RAQNMO
  18. Zaytseva M, Usman N, Salnikova E, et al. Methodological Challenges of Digital PCR Detection of the Histone H3 K27M Somatic Variant in Cerebrospinal Fluid. Pathol Oncol Res. 2022;28:1610024. doi: 10.3389/pore.2022.1610024 EDN: MXSPIC
  19. Zhang W, Bream JH, Leng SX, Margolick JB. Validation of Preamplification to Improve Quantification of Cytomegalovirus DNA Using Droplet Digital Polymerase Chain Reaction. Anal Chem. 2021;93(8):3710–3716. doi: 10.1021/ACS.ANALCHEM.0C02890 EDN: LGGQKD
  20. Kang Y, Lin X, Kang D. Diagnostic value of circulating tumor DNA in molecular characterization of glioma. Medicine. 2020;99(33):e21196. doi: 10.1097/MD.0000000000021196 EDN: VXRYNI
  21. Mcmahon JT, Studer M, Ulrich B, et al. Circulating Tumor DNA in Adults With Glioma: A Systematic Review and Meta-Analysis of Biomarker Performance. Neurosurgery. 2022;91(2):231–238. doi: 10.1227/neu.0000000000001982 EDN: GEIHTB
  22. Mcevoy AC, Calapre L, Pereira MR, et al. Sensitive droplet digital PCR method for detection ofTERTpromoter mutations in cell free DNA from patients with metastatic melanoma. Oncotarget. 2017;8(45):78890–78900. doi: 10.18632/oncotarget.20354
  23. Trung NT, Hoan NX, Trung PQ, et al. Clinical significance of combined circulating TERT promoter mutations and miR-122 expression for screening HBV-related hepatocellular carcinoma. Sci Reports. 2020;10(1):8181. doi: 10.1038/s41598-020-65213-8 EDN: HBYJPB
  24. Sidstedt M, Rådström P, Hedman J. PCR inhibition in qPCR, dPCR and MPS-mechanisms and solutions. Anal Bioanal Chem. 2020;412(9):2009–2023. doi: 10.1007/s00216-020-02490-2 EDN: FKLGIE
  25. Huang J, Zeng D, Duan G, et al. Single-Tubed Wild-Type Blocking Quantitative PCR Detection Assay for the Sensitive Detection of Codon 12 and 13 KRAS Mutations. Plos One. 2015;10(12):e0145698. doi: 10.1371/journal.pone.0145698 EDN: WUEXAP
  26. Vargas DY, Marras SA, Tyagi S, Kramer FR. Suppression of Wild-Type Amplification by Selectivity Enhancing Agents in PCR Assays that Utilize SuperSelective Primers for the Detection of Rare Somatic Mutations. J Mol Diagnostics. 2018;20(4):415–427. doi: 10.1016/j.jmoldx.2018.03.004
  27. Fujita Y, Nunez-Rubiano L, Dono A, et al. IDH1 p.R132H ctDNA and D-2-hydroxyglutarate as CSF biomarkers in patients with IDH-mutant gliomas. J Neuro-oncology. 2022;159(2):261–270. doi: 10.1007/s11060-022-04060-1 EDN: KYPZVA
  28. Otsuji R, Fujioka Y, Hata N, et al. Liquid Biopsy for Glioma Using Cell-Free DNA in Cerebrospinal Fluid. Cancers. 2024;16(5):1009. doi: 10.3390/cancers16051009 EDN: PNRUKH
  29. Crucitta S, Pasqualetti F, Gonnelli A, et al. IDH1 mutation is detectable in plasma cell-free DNA and is associated with survival outcome in glioma patients. BMC Cancer. 2024;24(1):31. doi: 10.1186/s12885-023-11726-0 EDN: AAJXZH
  30. Muralidharan K, Yekula A, Small JL, et al. TERT Promoter Mutation Analysis for Blood-Based Diagnosis and Monitoring of Gliomas. Clin Cancer Res. 2021;27(1):169–178. doi: 10.1158/1078-0432.CCR-20-3083 EDN: BMSLYJ
  31. Xie S, Wang Y, Gong Z, et al. Liquid Biopsy and Tissue Biopsy Comparison with Digital PCR and IHC/FISH for HER2 Amplification Detection in Breast Cancer Patients. J Cancer. 2022;13(3):744–751. doi: 10.7150/jca.66567 EDN: BNYHGN
  32. Chashchina GV, Tevonyan LL, Beniaminov AD, Kaluzhny DN. Taq-Polymerase Stop Assay to Determine Target Selectivity of G4 Ligands in Native Promoter Sequences of MYC, TERT, and KIT Oncogenes. Pharmaceuticals. 2023;16(4):544. doi: 10.3390/ph16040544 EDN: TYDDZQ
  33. Piccioni DE, Achrol AS, Kiedrowski LA, et al. Analysis of cell-free circulating tumor DNA in 419 patients with glioblastoma and other primary brain tumors. CNS Oncol. 2019;8(2):CNS34. doi: 10.2217/cns-2018-0015
  34. Lu Y, Du N, Fang X, et al. Identification of T2W hypointense ring as a novel noninvasive indicator for glioma grade and IDH genotype. Cancer Imaging. 2024;24(1):80. doi: 10.1186/s40644-024-00726-3 EDN: YIDFTB
  35. Penkova A, Kuziakova O, Gulaia V, et al. Comprehensive clinical assays for molecular diagnostics of gliomas: the current state and future prospects. Front Mol Biosci. 2023;10:1216102. doi: 10.3389/fmolb.2023.1216102 EDN: QHGLBE

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Supplement A: Tables providing supplementary information for the manuscript
Download (53KB)
3. Supplement B. Supplementary figures
Download (657KB)

© 2025 Eco-Vector