Дифференциальная диагностика неотложных состояний у больных сахарным диабетом

А. П. Цибулькин, Л. И. Анчикова

Кафедра клинической лабораторной диагностики (зав.- проф. А. П. Цибулькин), курс эндокринологии (зав.- проф. Л. И. Анчикова)
Казанского института усовершенствования врачей

Диабетический кетоацидоз, тяжелая диабетическая гипергликемическая некетоацидемическая гиперосмолярность и гипогликемия являются тремя наиболее частыми острыми осложнениями сахарного диабета. Они варьируют по степени выраженности и в запущенных случаях переходят в кому. Эффективность лечения зависит от точности диагностики и своевременности ее начала.

1. Диабетический кетоацидоз. Это осложнение представляет собой остroe клиническое проявление выраженной инсулиновой недостаточности. В таких условиях некомпенсированное действие группы континуальных гормонов, включающих глюкокортикоиды, катехоламины, глюкагон и гормон роста, сопровождается резким усилением процессов липолиза с образованием жировой кислоты. Последующее их окисление в печени до уровня органических кетокислот (ациетоуксусной и бета-оксикислой) и ацетона, приводящие к кетонемии, завершается развитием диабетического кетоацидоза. В диагностике последнего важное значение имеют полноценные лабораторные исследования (см. табл.).

Увеличение уровня недоокисленных продуктов сопровождается потреблением бикарбоната, одного из компонентов буферных систем крови, снижением его сывороточной концентрации и развитием метаболического ацидоза со сдвигом рН крови далеко за уровень компенсированных изменений. При замене бикарбонатного аниона анионами органических кислот имеется место нарастание величины «анионного превала» (АП), рассчитываемого по формуле: АП = Na⁺ — (HCO₃⁻ + Cl⁻). Увеличение АП находится в прямой зависимости от выраженности кетоацидоза у больных сахарным диабетом. Ацетон же достаточно легко фильтруется через почечный мембранарный фильтр и, попадая в мочу, приводит к развитию ацетонурии, а также диффундирует в альвеолярное пространство, что проявляется запахом ацетона изо рта больных.

Дефицит инсулина, кроме того, сопровождается снижением уровня тканей, диагностики острых диабетических осложнений

<table>
<thead>
<tr>
<th>Лабораторные показатели</th>
<th>Норма</th>
<th>Типы диабетических ком</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>кетоацидотическая</td>
<td>гиперосмолярная</td>
<td>гипогликемическая</td>
</tr>
<tr>
<td>Глюкоза, ммол/л</td>
<td>3,3—5,5</td>
<td>>16,5</td>
<td>>33,0</td>
<td><2,5</td>
</tr>
<tr>
<td>Осмолярность, ммол/кг</td>
<td>сложные порции до 8,0</td>
<td>280—295</td>
<td>300—340</td>
<td>>320</td>
</tr>
<tr>
<td>pH</td>
<td>7,36—7,43</td>
<td>6,9—7,2</td>
<td>>7,3</td>
<td>7,36—7,43</td>
</tr>
<tr>
<td>SB (HCO₃⁻), ммол/л</td>
<td>22—26</td>
<td>15—26</td>
<td>22—26</td>
<td></td>
</tr>
<tr>
<td>KOS без сдвигов</td>
<td>без выражения</td>
<td></td>
<td>метаболический ацидоз</td>
<td>без выражения</td>
</tr>
<tr>
<td>АГ (анионный превал), ммол/л</td>
<td>4—12</td>
<td>21—36</td>
<td>8—16</td>
<td>4—12</td>
</tr>
<tr>
<td>Кетоновые тела, г/л</td>
<td>0,03—0,13</td>
<td>1</td>
<td>0,1—1,0</td>
<td>0,03—0,13</td>
</tr>
<tr>
<td>Кетоновый сыв., ммол/л</td>
<td>3,8—5,2</td>
<td>вариабельно вариабельно</td>
<td>3,8—5,2</td>
<td></td>
</tr>
<tr>
<td>Натрий сыв., ммол/л</td>
<td>137—145</td>
<td>вариабельно вариабельно</td>
<td>137—145</td>
<td></td>
</tr>
<tr>
<td>Мочевина сыв., ммол/л</td>
<td>2,5—8,3</td>
<td>5—21</td>
<td>12—50</td>
<td>2,5—8,3</td>
</tr>
<tr>
<td>Гематокрит (м/ж), %</td>
<td>40—48/36—42</td>
<td>увеличен (2+) увеличен (3+)</td>
<td>40—48/36—42</td>
<td></td>
</tr>
</tbody>
</table>

Б. Моча

Глюкозурия, %	нет	2—4	3—6	нет
Ацетонурия	нет	3+	±	нет
Олигурия	нет	может быть	часто	нет
необходимость потребления глюкозы и стимулирование ее образования за счет процессов гликогенолиза и глюконеогенеза, что вызывает стремительное увеличение уровня гипергликемии как второго патогенетического фактора утяжеления состояния у больных с диабетическим кетоацидозом. Концентрация глюкозы быстро превышает уровень почечного порога (обычно менее 10 ммоль/л), что сразу ведет к ее появлению в моче. Степень глюкозурии, как правило, увеличивается более 1—2% и напрямую отражает повышение относительной плотности мочи.

Большие потери воды у таких больных, связанные с развитием омстического диуреза и полиурии, превышают уровень ее поступления в кровь из внутриклеточных пространств и ведут к быстрому прогрессирующему процессу дегидратации организма. При тяжелых кетоацидозах дефицит воды может достигать 100 мл/кг массы тела больного. Лабораторными признаками дегидратации являются сгущение крови со вторичным увеличением гематокрита, уровня гемоглобина и числа эритроцитов. Степень дегидратации и одновременно выраженность метаболического ацидоза чаще всего определяют тяжесть состояния больного.

Что касается изменений лабораторных показателей электролитного обмена, то результаты здесь неоднозначны. Однако во всех случаях до лечения на фоне дефицита тотального уровня калия в организме больного с диабетическим кетоацидозом имеют место нормальные или даже повышенные концентрации сывороточного калия. Указанное противоречие легко объяснить выходом больших количеств ионов калия из клеток за счет развития ацидоза, что приводит к гиперкалиемии с последующей частичной потерей калия с мочой на фоне высокого диуреза. Уровень ионов натрия в сыворотке колеблется от незначительной гипонатриемии до гипернатриемии.

Прямым следствием дегидратации является прогрессирующее снижение почечной перфузии, в результате которой нарушается выделение и происходит вторичное увеличение уровней мочевины и креатинина в сыворотке. Поэтому высокий уровень мочевины в сыворотке больного с кетоацидозом без исходных тяжелых поражений сердечно-сосудистой системы и почек свидетельствует о тяжести осложнения.

Коматозное состояние у больного с диабетическим кетоацидозом редко возникает внезапно; обычно наблюдаются несколько этапов утяжеления кетоацидоза, что занимает от нескольких часов до 1—3 суток. Кроме того, в типичном случае диабетический кетоацидоз развивается у молодых, страдающих сахарным диабетом первого инсулинозависимого типа.

На начальном этапе развития легкий кетоацидоз вызывает у больного ощущение разбитости с головными болями различной выраженности, нарастающую жажду, полиурию, появление изо рта запаха ацетона. Утяжеление клинической картины сопровождается признаками заторможенности, рывотой, иногда с кровью, нарастанием дегидратации с падением артериального давления и снижением тонуса мышц.

При тяжелом кетоацидозе развивается сопорозное состояние. При этом кожные покровы и слизистые сухие, резко снижен тургор кожи, понижен тонус глазных яблок, изо рта улавливается резкий запах ацетона. Пульс частый и аритмичный, АД снижено, тонус сердца умеренно приглушен. Дыхание глубокое, редкое. Достаточно часто поражается желудочно-кишечный тракт — болезненность в области живота иногда напоминает острую хирургическую патологию.

При коме больной теряет сознание, дыхание углубляется, становится "шумным" с частотой от 8 до 12 в минуту, резким запахом ацетона. Рефлексы подавляются, имеют место западение глазных яблок, сухость кожи, резкое снижение ее тургора, гипотония мышц, падение температуры тела. Аритмия принимает угрожающие жестокие, иногда на стадии комы преобладает картина острый сердечно-сосудистой недостаточности. Вернуть к жизни больного, находящегося в бессознательном состоянии в течение 3—6 часов, очень сложно.

Следует иметь в виду, что проявление кетоацидоза могут наблюдать не только при сахарном диабете. Он развивается у больных с выраженный...
ной алкогольной зависимостью, у беременных женщин и кормящих матерей, которые длительное время по каким-то причинам были лишены ка- лорийного питания. Он отражает удовлетворение энергетических потребностей у таких людей преимущественно за счет липолиза. При этом "голодный" кетоацидоз в отличие от диабетического легко компенсируется введением глюкозы.

2. Диабетическая гиперосмолярная некетоацидемическая гипергликемия. Это осложнение, получившее общее название "гипергликемический гиперосмолярный некетотический синдром" (ГГНС), представляет для жизни больного реальную угрозу, особенно при переходе в кому. Синдром характеризуется тяжелой гипергликемией, значительным увеличением сывороточной осмолярности и клиническими признаками дегидратации без выраженных явлений кетоацидоза.

Возможность достижения высоких уровней гипергликемии без сопутствующего образования кетоновых тел можно объяснить наличием в сыворотке больных с ГГНС более высоких уровней инсулина, чем у больных с диабетическим кетоацидозом. Поскольку антилипоцитический эффект инсулина в 10 раз превышает его глюкозотропное действие, то вполне допустимо развитие состояния с преимущественным нарастанием в сыворотке концентрации глюкозы без выраженных сдвигов в сторону метаболического кетоацидоза. Другим фактором преимущественного развития гипергликемии является часто обнаруживаемое у таких больных повышение почечного порога для глюкозы.

В связи с отсутствием действия на организм больных с ГГНС кетогенного ацидоза процесс прекоматозного состояния весьма растянут, а сам синдром длится часто более недели. Однако больные обращаются за помощью лишь при тяжелых нарушениях обмена. Поэтому при относительно невысокой частоте развития данного осложнения летальность при нем достигает 40%.

Неудивительно, что одним из ведущих лабораторных признаков ГГНС является быстро прогрессирующая гипергликемия. При этом уровень глюкозы в сыворотке может превышать 200 ммоль/л. В прямой связи с уров-

нём гипергликемии находится степень нарастания осмолярности. Гиперосмолярность относится к следующему лабораторному показателю, характеризующему ГГНС. При достижении уровня сывороточной осмолярности до 340 ммоль/кг наступает реальная угроза для жизни пациента.

Выраженная глюкозурия у больных ГГНС сопровождается выведением больших количеств жидкости и последующим развитием тяжелой дегидратации. Степень дегидратации иногда настолько велика, что приводит к снижению почечной перфузии, достигающей степени олигурии и анурии. Следствием этого является задержка в организме добавочных количеств глюкозы, а также мочевины. Уровень мочевины в сыворотке достигает максимальных значений, превышая 40 ммоль/л. Содержание электролитов в сыворотке больных варируемо, но всегда необходимо помнить о запре- жении реальных концентраций ионов натрия при гипергликемии. Истинная концентрация равна измеренной с добавлением 1,6 ммоль/л на каждые 5,5 ммоль/л сывороточной глюкозы.

Клинические проявления ГГНС отражают степень ведущих нарушений обмена веществ; сам же синдром развивается преимущественно у пожилых пациентов со вторым (инсулинзависимым) типом диабета. У больных отсутствуют клинические признаки декомпенсированного ацидоза в виде глубокого дыхания с резким запахом ацетона. Ведущими же становятся признаки дегидратации организма в виде усиливающейся полиурии, жажды, снижения тургора кожи, тонуса глазных яблок, прогрессирующей гипотонии. Достаточно рано проявляются признаки поражения нервной системы: от слабости и сонливости, а также изменений со стороны перифе- рической нервной системы до двустороннего нистагма, гипертонуса мышц, развития патологических рефлексов и перехода процесса в кому.

Развитие ГГНС возможно также у пациентов без признаков диабета. Основными его причинами считаются тяжелые инфекции, тромбоэмболии различной локализации, тяжелые стрессовые реакции при травмах, диспепсии, а также применение высоких доз диуретиков, кортикостероидов и бета-блокаторов. Во всех указанных слу-
3. Острый гипогликемический синдром как осложнение сахарного диабета. Тяжелая гипогликемия выступает достаточно частым острой осложнением сахарного диабета в случае избыточного потребления алкоголя или пероральных сахароснижающих препаратов. Фактором риска данного осложнения обычно является плохое питание, нарушение личной функции, возраст старше 60 лет и множественная тромбоцитоз.

Наиболее ранние симптомы гипогликемии связаны с нарушением функции корковых структур в виде раздражительности, головокружения, головной боли и апатии. Указанная симптоматика должна настораживать врача, поскольку она является тяжелой активации адренергической системы: чувство голод, нейромедиаторная гемолиз, озноб, бедность, потливость, усилению сердцебиение и тромб. При отсутствии лечения состояние больного прогрессивно ухудшается, наступает помутнение сознания, развиваются судороги и кома.

Клинические маски острой гипогликемии могут быть столь разнообразными, что требуют дифференциальной диагностики с острой психопатологией, эпилепсией, динамическими нарушениями мозгового кровообращения и даже инсультами, причем в максимально короткие сроки для принятия экстренных лечебных мер.

В связи с обилием клинических проявлений гипогликемии необходимо проведение полноценного лабораторного анализа, ведущим показателем является сывороточная концентрация глюкозы. Ранние клинические признаки могут обнаруживаться при уровне глюкозы ниже 3 ммоль/л; полная же клиническая картина обычно развивается при концентрации глюкозы ниже 2,5 ммоль/л.

Необходимо также отметить существование форм гипогликемического синдрома, не имеющих отношения к сахарному диабету. К ним относятся гипогликемия при поражении поджелудочной железы с усилением выделения инсулина, гипогликемия на фоне эндокринных заболеваний с развитием гипогликемии, гипопитуитаризма или гипотиреоза. Отдельные формы гипогликемии связаны с токсическими воздействиями на фоне недостаточности печени или хронической почечной недостаточности.

4. Отеч мозга как ведущее осложнение при лечении неотложных состояний диабетического генеза. Угроза развития отека мозга существует в начале лечения больных с диабетическими осложнениями, имеющими в основе высокий уровень сывороточной глюкозы. К ним относятся пациенты с гипертонической дисфункцией, а также пациенты с гипертонической дисфункцией и гипертонией. Процесс связан с тем, что при любой форме гипертонической гиперосмолярности молекулы воды покидают внутриклеточное пространство, переносясь в секторы с более высоким осмотическим давлением. При этом у клеток, особенно головного мозга, имеется фактор предосторожности, который обеспечивает сохранность собственных осмопротективных молекул ядер аминокислот. Эти соединения позволяют клеткам сохранять свою относительную независимость на фоне прогрессирующей гиперосмолярности сыворотки. При стандартной начальной терапии таких больных введением гипертонических растворов внутриклеточное пространство клеток мозга быстро становится гиперосмолярным по отношению к сыворотке. Следствием этого является быстрая изолированная водная диффузия в клетки с развитием отека мозга. При лечении таких больных требуется постоянный мониторинг признаков развития отека мозга.