Гемато-энцефалический барьер и значение его для проникновения различных веществ в область центральной нервной системы.

(Литературный обзор).

Ассистента Акушерско-Гинекологической клиники Казанского Гос. Института для усов. врачей

В. Д. Черноврой.

В 1921 году Штерн и Готье установили, что между кровью с одной стороны и цереброспинальной жидкостью с нервными элементами головного и спинного мозга—с другой существует барьер, который они назвали гемато-энцефалическим. В чем состоит его сущность, каков механизм его работы и даже где он располагается,—в точности незвестно; но факт его существования несомненен, так как многие вещества, циркулирующие в крови, даже в значительном количестве, никогда не появляются в области центральной нервной системы и в цереброспинальной жидкости. Их действие не проявляется в мозге не потому, что они этим действием не обладают, а потому, что существует преграда для их проникновения в мозговую ткань, и в обычных условиях они задерживаются на границе между кровью и мозгом.

Однако не все вещества, введенные в общий круг кровообращения, задерживаются ГЭБ, — сродный натр, напр., будучи вприснут в кровь животному, производит уменьшение живости и возвождение его, а иногда даже—оценщение и неподвижность. При этом бром обнаруживается в цереброспинальной жидкости и в веществе мозга. Напротив, иодистый натр при внутреннем, внутрибрюшинном и подкожном введении не вызывает нервных симптомов у животных и не обнаруживается ни в цереброспинальной жидкости, ни в мозговой ткани. Действием, одинаковым с бромистым Na, обладают также серноцинственный Na, салициловый Na, пикриновокислый Na, морфий, стрихнин, курае, атропин, сангилин, жёлчные соли, некоторые красивые вещества; веществами, не проходящими через ГЭБ, кроме иодистого Na, являются железоцинственный Na и различные антитела.

Было, далее, установлено, что действие какого-либо вещества обнаруживается клиническими симптомами лишь в том случае, когда это вещество находится в цереброспинальной жидкости и в мозговой ткани; если же животное после вприскивания данного вещества остается нормальным, то ни в цереброспинальной жидкости, ни в нервной ткани вещества этого не обнаруживается.

Существует при этом тесный параллелизм между проникновением какоголибо вещества из крови в цереброспинальную жидкость и его присутствием в нервной ткани. Такой же параллелизм обнаруживается между эффектом, производимым на нервную ткань вприскиванием токсической субстанции в общий круг кровообращения, и между проникновением этой субстанции в цереброспинальную жидкость.

2) ГЭБ — гемато-энцефалический барьер (окращение составительницы обзора).
3) Говоря о цереброспинальной жидкости, авторы имеют в виду все жидкости, наполняющие подпаутинное пространство и полости мозговых желудочков, а также околососудистые и околоклеточные пространства.

Каз. Мед. Журн. 1928 г., № 5.
Каждое вещество, введенное непосредственно в цереброспинальную жидкость, или проникающее в нее через кровь, отыскивается в нервной ткани. Присутствие его в цереброспинальной жидкости служит, повидимому, необходимым условием его действия на нервные элементы цереброспинальной дуги. Разница в чувствительности различных животных по отношению к некоторым веществам может быть объяснима различной сопротивляемостью ГЭБ к проникновению этих веществ из крови в цереброспинальную жидкость.

Таким образом ГЭБ защищает нервные элементы от некоторых веществ, циркулирующих в крови в данный момент, но не защищает от других веществ, находящихся или непосредственно введенных в цереброспинальную жидкость. Последняя составляет как бы питательную среду нервных элементов цереброспинальной дуги.

Теми же авторами изучалась диффузия различных веществ при помощи проявления первичных нервных симптомов, а также скорость проникновения в кровь веществ, введенных в желудочку мозга и в подпаутинное пространство. Опыты производились с железоцианистым Na, нитрофенилсольным Na, лимонникисым Na, хлористым железом (FeCl₃) и др. Из этих опытов авторы могли сделать следующие выводы: 1) Каждое вещество, находящееся в данный момент или введенное в цереброспинальную жидкость желудочков мозга, переходит в цереброспинальную жидкость подпаутинного пространства. 2) Проникновение какого-либо вещества, находящегося в субарахноидальной жидкости, в жидкость желудочков мозга непостоянно и происходит только тогда, когда давление в подпаутинном пространстве превосходит известную степень. 3) Вещества, введенные в жидкость желудочков, обнаруживаются в глубине нервной ткани. 4) Вещества, введенные в подпаутинное пространство, обнаруживаются в нервной ткани тогда, когда их можно открыв в жидкости желудочков, и в этих случаях проникновение их в мозговую ткань представляет ту же картину, как и при введении их в желудочках мозга. 5) Диффузия или ток цереброспинальной жидкости происходит, повидимому, в следующем направлении: желудочки — подпаутинное пространство — кровь. 6) По отношению к нервной ткани жидкость желудочков представляет жидкость впоследствии, жидкость подпаутинного пространства — выносную. 7) Самый верный способ достичь нервных элементов — это непосредственное введение данного вещества в систему желудочков.

Целым рядом опытов, опубликованных в 1927 г., Готье и Рапапорт показали, что электрическое действие ГЭБ не объясняется просто химической или физико-химической природой вводимых в кровь веществ. Ни попытки Mestreza и Lehmanna и Moesmann'a изменить для объяснения этого феномена принцип равновесия Donnan'a, ни исследования Krebs'a и Wittgenstein'a, якобы показывающие, что прохождение различных веществ через ГЭБ регулируется электрическим зарядом этих веществ (поэтому, по мнению указанных авторов, при всех других одинаковых условиях только анионны проходят в кровь в цереброспинальную жидкость, тогда как катионы не попадают туда) не были подтверждены опытами Готье и Рапапорта. Опыты этих авторов заставляли их прийти к заключению, что некоторые изолированные клетки матери при таком же, как другие катионы (напр., алкоголь), переходят барьер, некоторые же кислоты, клеточные вещества и т. д. также как другие анионы, проникают в ГЭБ. Избирательное действие барьера при этом обнаруживается только в направлении из крови в цереброспинуальную жидкость, но совершенно отсутствует в обратном направлении.

Но ГЭБ не является абсолютно непроходимым даже для тех веществ, которые при обычных условиях не проходят через него. Под влиянием некоторых физических манипуляций или при введении в кровь, некоторый лекарственные вещества он может сделать проходимым для них. Fевре de Арри и Millet показали, что легкий удар по голове прокола может вызвать травму, достаточную для того, чтобы сделать возможным прохождение в мозг введенного в кровь гипо-

1) Штерн и Готье. Archives internationales de physiologie, 1923, vol. XX, fasc. 4.
2) Comptes rendus des séances de la Société de Biologie, 1927, № 22.
3) Цит. по Штерн и Рапапорт.
4) Тоже.
5) Comptes rendus, 1926, t. 94, № 11.
тического вируса, который при обычных условиях не может преодолеть сопротивление ГЭБ. Тот же результат можно получить вирсыканием в спинномозговой канал дестиллированной воды, гипертонических растворов или чужеродного белка, напр., сыроворотки лошади (Heyden, Silberstein и др.).

Подобным же агентам — модификаторами — могут быть некоторые лекарственные вещества. Fevre de Arric и Millet проделали целую серию опытов с утратопропионитом и др. лекарственными веществами. Так, 1) они вводили кролика внутрипрероноственно 10 утратопропионата, а через час внутривенно же ему вводился герпетический вирус, — получалось герпетическое воспаление мозга и смерть животного на 15-й день; 2) кролику делалась подкожно инъекция 0,5 салициловокислого натра, а через 1/2 часа внутривенно вводился герпетический вирус, — получался также энцефалит и смерть на 12-й день; 3) кролику вводился подкожно 1,0 подостого калия, а через час внутривенно герпетический вирус, — этот кролик выжил.

На основании этих и подобных опытов авторы пришли к заключению, что все изучаемые лекарственные вещества можно разделить на 2 группы: препараты первой группы действуют так, что у опытных животных всегда развивается герпетический энцефалит, при введении препаратов второй группы болезни этой никогда не появляется. К первой группе относятся утратопропионат, желчные кислоты и соля, мочевина, салициловокислый Na, бромистый K, ко второй — подостый K, солянокислый хлор, неосальварсен. Такое различие вполне соответствует тому делению, которое можно установить между теми же препаратами по отношению к их способности проникать или не проникать через ГЭБ. Следовательно, те вещества, которые способны диффундировать из крови в цереброспинальную жидкость, позволяют и яду переходить из крови в мозг, т. е. делают ГЭБ проходимым; вещества же, не переходящие за ГЭБ, не способствуют перерождению яда.

Подобные же опыты были проделаны Fevre de Arric и Millet на кроликах с ядом тетanus, причем у контрольного животного, не получившего предварительно утратопропионата, при втираниях в вену 0,5 тетанического яда развилась легкий признак задней конечности, тогда как у атрофированного наблюдалась полная потеря тетануса, и животное погибло на 6-й день после впрыскивания. Введение 0,1 яда непосредственно в цереброспинальную жидкость убивало кроликов меньше, чем в 16 часов. Поэтому надо думать, что утратопропионат, действуя на эндотелиевые кровеносных сосудов, изменяет их проходимость для токсина и способствует фиксации яда в нервных клетках. Цереброспинальная жидкость в этих случаях оказывалась невозвратной для мышей, так как яд в этом случае уже фиксировался на нервных элементах.

При помощи введения в организм животных различных красящих веществ Fevre de Arric и Millet удалось определить избирательное действие этих веществ на различные части нервой системы и попытно доказать, что некоторые краски, проходя через ГЭБ, тоже способны делаться проходимым для веществ, которые обычно он не пропускает. Так, напр., метилевая сирена проходит в цереброспинальную жидкость и фиксируется на нервной ткани, Neutralroth оказывает сплетение, а может быть и нервные клетки, но не обнаруживается в цереброспинальной жидкости; Trypanblau хорошо окрашивает миозную мозговую оболочку, но не проходит в цереброспинальную жидкость, а Diamineurin не проявляет никакого рода на сплетениям, ни на мозговую оболочку и не проявляет в жидкости. Поэтому первые из названных красящих веществ производят благоприятное влияние на фиксацию на нервных клетках нейропропионата, впрочем того же вену, тогда как последнее красящее вещество не благоприятствует гематоэнцефалической инфекции, т. к. не открывает дверей для нее.

Основываясь на способности некоторых лекарственных и красящих веществ делать ГЭБ проходимым для ядовитых веществ, исследователи (Muttermilch, Fevre de Arric и др.) в дальнейших изысканиях поставили себе задачей выяснить проходимость ГЭБ для антител. Muttermilch опыты на кроликах доказали сначала, что, если этим животным ввести холерную вакцину перитонеальным путем, то цереброспинальная жидкость их не аглютинирует холерных вибрионов; если же этим кроликам ввести внутривенно 1,0 — 2,0 утратопропионата, то их цере-
босипинальная жидкость делается агглютинирующей по отношению к этим микро-
бам. Следовательно, уротропин делает ГЭБ легко проходимым для микробных тел.
Еще сильнее бывает выражена агглютинирующая способность цереброспинальной
свойства менингит посредством впрыскивания в цереброспинальную полость 0,5 куб.
ность цереброспинальной жидкости животных, подготовленных таким способом,
может достигать 1/10 агглютинирующей способности сыворотки крови. Следовательно,
проходимость ГЭБ для антител значительно больше выражена под влиянием аспе-
тического менингита, чем под влиянием уротропина.

Fevre de Arric и Millot делали подобные же опыты с тетаниче-
ским антитоксином, т. е. с антитоксином яда, который проявляет сильное избирательное
свойство по отношению к нервной ткани. Эти опыты также, как и опыты
Muttermilcha, показали, что под влиянием впрыскивания уротропина ГЭБ
делается более проходимым как для яда столовика, так и для его антитоксина.
На основании этого Fevre de Arric и Millot делают заключение, что внутреннее
введение уротропина с лечебной целью во многих случаях является опасным, тогда как с другим впрыскиванием его можно увеличить силу действия
антитоксинического лечения.

Как показали, однако, исследования др. авторов (Muttermilch, Dele-
ville и Belin), уротропин незначительно увеличивает проходимость ГЭБ. В свое
вопросе доказано, что натронные и каолиновые винокаменокись в сыворотке,
как вводимые в вену, никогда не обнаруживаются в цереброспинальной жидкости—
даже, если одновременно вводится уротропин.

В виде важного значения висмута в терапии сифилитических заболеваний,
A. Paulin и G. Desroches 4) своими опытами старались выяснить,
дает ли уротропин проходимым ГЭБ для неколлоидных электролитов, и для
этого выбрали азотнокислый натрий. Опыты производились на больных, страдающих
слабоумием. Контрольные опыты показали, что у 4 из 5 испытуемых азотнокислый натрий
был обнаружен в цереброспинальной жидкости в количестве 10 мгр. При одновременном введении уротропина, внутривенно или внутримышечно, увеличе-
ния содержания селитры в цереброспинальной жидкости не получалось. Имея еще
недостаточное количество опытов, авторы не решаются высказаться определенно,
предполагая, что, может быть, они брали недостаточную дозу уротропина (0,5).

Чтобы проверить свои предыдущие опыты и опыты других исследователей,
них поставили опыты с уротропином по отношению к кри-
сталлоидам (железоцианистый и нодистый N) и коллоидам (Tripanblau, Kongorot)
и получили следующие результаты: кристаллоиды, впрыснутые в кровь одновре-
менно с уротропином, не были обнаружены ни в цереброспинальной жидкости,
ни в нервной ткани, исключая двух случаев, когда были обнаружены слабые следы

1) Comptes rendus, 1927, t. 96, № 10.
2) Ibid., 1927, t. № 13.
3) Ibid., 1927, № 25.
4) Comptes rendus, 1927, t. 96, № 13.
5) Ibid., 1927, t. 97, № 25.
их. Что касается коллоидных веществ, то при введении Tripianblau положительный результат получен в огромном большинстве случаев, хотя и не всегда, Kongo Roth же никогда не был обнаружен. Это подтверждает прежние результаты Ш т е р н.

В последнее время Ш т е р н и ее сотрудниками изучалось еще действие некоторых факторов на функцию ГЭБ. Так, она и Л о к ш и н 1) производили отравление пролаков и белых мышей окисью углерода, сероводородом и цианистой кислотой, действие которых, по их мнению, имеет не только теоретический, но и практический интерес. Для опытов брались кристаллоиды (водяные и железоцианистые препарата) и коллоиды (Tripianblau и Kongo Roth). Как при остром, так и при хроническом отравлении CO, последние, как правило, переходили через барьер и обнаруживались в цереброспинальной жидкости и мозговой ткани, железоцианистый Na никогда не обнаруживался в цереброспинальной жидкости, а присутствие кода было констатировано в 3 случаях из 75. После отравления сероводородом было также подмечено прохождение Tripianblau и Kongo Roth в цереброспинальную жидкость и в мозговую ткань. Железоцианистый и иодидный Na, вприснутые отдельно или одновременно с красками в общий круг кровообращения, напротив, ни в одном случае в цереброспинальной жидкости не были обнаружены. Такие же результаты были получены при отравлении цианистой кислотой. Стало быть, эти яды производят ослабление сопротивляемости ГЭБ по отношению к коллоидам, не уменьшая сопротивляемости его по отношению к кристаллоидам. При этом, повидимому, повреждаются сосудистые элементы, которым приписывается существенная роль в выборе коллоидов, циркулирующих в крови.

Те же авторы 2) определяли сопротивляемость ГЭБ по отношению к коллоидам и кристаллоидам у новорожденных, отравленных алкоголем. Премыславскими исследованиями Ш т е р н, Р е в о г т и Р и н о п о р т 3) было установлено, что ГЭБ у новорожденных различных животных (кобы, собак, пролаков, крыс и мышей) представляет по отношению к коллоидам почти такое же сопротивление, как и у взрослых, тогда как по отношению к кристаллоидам сопротивление барьер значительно меньше или отсутствует совершенно. Авторам казалось интересным проследить, может ли состояние матери во время беременности изменить активность ГЭБ у плода и отразиться на новорожденном. Произведенные в этом направлении опыты дали следующие результаты: у родившихся от отравленной алю- голем матери кроликов, которые исследовались через 1—2 дня после рождения, Kongo Roth, впрыснутый под кожу, был найден в нервной ткани, в противоположность тому, что наблюдалось у нормальных новорожденных. Впрыснутый же под кожу иодистый Na, который у новорожденных, как правило, обнаруживается в цереброспинальной жидкости и в нервной ткани, не был обнаружен ни в одном случае ни там, ни здесь. Это изменение функции ГЭБ у новорожденных, как следствие отравления матери алкоголем, заслуживает особого внимания, так как проливает совершенно новый свет на вопрос о связи различных отравлений матери на развитие нервной системы ребенка.

Из желез внутренней секреции, которым можно приписывать важную роль в регулировании деятельности ГЭБ, щитовидная и половые железы представляют особенный интерес в том отношении, что изменение их функций отражается на состоянии нервных центров. Ш т е р н, Р а п о р т и К р е м л е в 4) изучали действие, производимое на ГЭБ удалением этих желез, определяя попутно сопротивляемость барьеру по отношению к коллоидам и кристаллоидам. Опыты производились на кошках и кроликах и показали, что удаление щитовидной железы и нарушение сопротивляемости ГЭБ по отношению к коллоидам, не изменяя видимой сопротивляемости его по отношению к кристаллоидам.

В своей работе о ретiculo-эндоцеллиальной системе во время беременности Б е н д а 5) также коснулся вопроса о проходимости мозговых оболочек у беременных, рожениц и родильниц. Для опытов он пользовался уранином, бромом и реакциями с гомозонами. Всего им было исследовано 32 женщин на первую половину беременности и 110—во вторую, во время родов и в послеродовом периоде Из 92 случаев первой группы лишь в 2 наблюдалось в умеренной степени, ослабление

1) Ibid.
2) Comptes rendus de Soc. de Biologie, 1927, t. 97, № 25.
3) Цит. по Ш т е р н и Л о к ш и н 3.
4) Comp. r. de la Soc. de Biologie, 1927, t. 97, № 25.
проходимости мозговых оболочек; во всех остальных проходимость их была нормальной, поскольку дело не идет о токсинозах беременности,—при этих последних почти всегда проходимость оказывалась увеличенной. Что касается 110 случаев второй группы, среди которых в 9 имела место эклампсия, то оказалось, что в последние недели беременности, а особенно во время родов, проходимость мозговых оболочек в большинстве случаев бывает значительно повышена. Это изменение, чем у многородящих, особенно же сильно оно бывает выражено у экламптичек. На основании всех своих исследований автор предполагает, что это увеличение проходимости является типичным состоянием оболочек для эклампсии. «Во всяком случае,—говорит он,—тамматический реакция могла бы приобрести значение для дифференциального диагноза эклампсии». Обратное развитие этих свойственных беременности изменений наступает постепенно,—нормальное состояние достигается, в среднем, лишь через 4—6 недель после родов, а часто и позднее. Кормление, повидимому, не оказывает влияния на проходимость оболочек. Какого-нибудь определенного соотношения между тяжестью болезней беременных и проходимостью мозговых оболочек не наблюдается, но известная связь здесь очевидна,—далеко идущий, хотя и не абсолютный параллелизм, несомненно, существует между проходимостью мозговых оболочек и, напр., hydrops gravidarium, а также родственными ему заболеваниями.

H e i l i g и H a f f 1) исследовали проходимость мозговых оболочек во время менструации при помощи метода с ураном и получили поразительные данные,—именно, что концентрация уранина в цереброспинальной жидкости в первые дни менструального периода в 10 раз сильнее, чем в межменструальный период. На 3-й день менструации концентрация почти приближается к норме. В е n d а свои опытами подтверждает это. «Здесь мы стали перед интересным явлением,—говорит он,—что барьер повреждается не только под влиянием патологических изменений (менингит, прогрессивный паралич и др.), но и при физиологическом влиянии половых желез». Чтобы проверить это положение, H e i l i g и H a f f делали впрыскивания животным экстрактов из яичника и щитовидной железы. Оказалось, что если эти экстракты вводились порознь, то это не оказывало влияния на проходимость оболочек, при комбинации же их исследователи наблюдали усиление проходимости. На основании этих опытов можно думать, что функциональное состояние барьера находится под гормональным влиянием. Этим-то обстоятельством, вероятно, и объясняется тот факт, что начало беременности во многом похоже на менструальный период,—менструация во многих отношениях представляет как бы миниатюрную картину беременности, причем в том и другом случае, повидимому, играют большую роль гормоны желтого тела. Во вторую половину беременности, по исследованиям B e n d a, функцию желтого тела берет на себя плацenta.

Изучая на ярдах влияние беременности на деятельность ГЭБ в ранние сроки беременности,—с первых дней до времени наступления, родов,—Ш т е р н и Л о к ш и н а 2) не могли, однако, подтвердить опытов B e n d a: ни коллоиды, ни красталлоиды в нормальном состоянии животного не проходили через ГЭБ и не обнаруживались ни в цереброспинальной жидкости, ни в нервной ткани. Отравление С0 и алкоголем произошло у опытных (бременных) животных то же действие, как и у контрольных: подыстые и железоцинностые препараты не проходили через барьер, а T r i p a n b l a u и K o n g o r o t h проходили через него. Равным образом опыты W o l f e r a, J a c o b i и K o l l e 3) не подтверждали опытов H e i l i g a и H o f f a о проходимости ГЭБ в известной фазе менструаций.

Ш т е р н, Л о к ш и н а и Ф а л к 4) делали также опыты с сопротивляемостью плацентарного барьера—в виду того важного значения, которое имеет деятельность последнего для нормального развития и жизни зародыша. Уже ранее Ш т е р н и P a s q u i e t установили, что плацентарный барьер относится к некоторым веществам, циркулирующим в крови, так же, как и ГЭБ. Последние же опыты показали, что у животных (крохал) в различных стадиях беременности при впрыскивании в кровь матеря Tripanblau, Kongoroth'a и железоцинностных препаратов, вещества эти никогда не обнаруживаются в крови зародыша, следы

1) Cит. по B e n d a.
2) Comptes rendus, 1925, № 25.
3) Cит. по Ш т е р н.
4) Ibid.
же подкожного Na могут быть обнаружены. В имут, также, не проходил через плацентарный барьер (в одном только случае были найдены следы его). После отравления крольчаток CO сопротивляемость плацентарного барьера по отношению к газу и висмуту уменьшается. Железоочистительные препараты и Trianthanol не обнаруживались у зародышей и после отравления матери CO; также и Kongoroth никогда не был находился у зародыша, хотя обнаруживался в амнионной оболочке. В этом отношении заметна известная разница между ГЭБ и плацентарным барьером.

Проф. Сперанский 1) дает дальше в изучении этого замечательного феномена. Он придает значение тому, что ГЭБ в одних случаях является приспособлением защитного характера, обеспечивающим в известной мере постоянство состава мозговой среды, в других же, именно, в патологических случаях, существование его является источником опасности для организмов. Некоторые токсины, например, тетанический, очень легко проникают через барьер и вступают в связь с нервными элементами, тогда как антител барьером задерживаются. Токсины, вступая в связь с мозгом, задерживаются в нем и не выводятся за его пределы, тогда как антитоксина, если и проникают в мозговую ткань, то быстро выводятся из нее (В. Анспон) 2). Введение специфических антигел в субдуральное и субарахноидальное пространство не обеспечивает попадания их в мозг, так как, повидимому, пространства эти являются по отношению к мозгу пространствами, куда мозг выделяет, но откуда обычно не черпает 3).

Выше, из работ других исследователей, мы видели, что, дабы сделать ГЭБ проходимым для антитоксинов или некоторых химических веществ, можно вводить в кровяное русло уротропин, искусственно вызывать асептический менингит или производить отравление животных. Сперанский делает для этого попытку применить т. наз. "буксирование" 4). Во время своих опытов он заметил, что, если у собаки влечет больное количество цереброспинальной жидкости (7—10 куб. с.), затем, не отнимая шприца, ввести жидкость обратно и снова взвезь ее, то она не будет еще бесцветной, а становится желтоватой. При повторении этого опыта окраска жидкости делается все более и более желтой. Автор объясняет это тем, что сосуды, которые идут в самом веществе мозга, не выдерживают следующего друг за другом повышения и понижения давления и начинают пропускать то, чего обычно они не пропускают; поэтому в район центральной нервной системы получают доступ такие вещества, которые при обычных условиях не могут выйти за пределы кровеносных сосудов,—при описанных, искусственно созданных условиях, при которых временно получается "hyperaemia ex vacuo", сыворотка из сосудов начинает проникать в мозг.

Пользуясь приемом "буксирования", автор и производил все свои последующие опыты, техника которых была почти всегда одинаковой. Двум кроликам, напр., вводилась в ушную вену антитокическая сыворотка, и у одного из них делалась субокципитальная прокол, извлекалась цереброспинальная жидкость (1,0—1,6), тогда же вводилась вновь и снова извлекалась, причем иногда этот прием повторялся 1—2 раза. После последнего извлечения жидкость уже не вводилась, чтобы оставить в мозге пониженное давление. Приблизительно через 1—2 часа после этого проколы заражались интразеребрально (путем трепанации). Обычно антитокическая сыворотка, введенная в цереброспинальную жидкость, проявляет свое действие слабо и неверно, потому что она встречается с вирусом; прием же "буксирования", разрушая ГЭБ механическим путем, обеспечивает проникновение ее в мозговую ткань. При опытах все контрольные кролики заболели и погибли так, как будто им сыворотка не вводилась совсем; из опытных же заболел только один, которому, благодаря закупорке игры, не удалось проделать приема "буксирования". Все остальные остались здоровыми. Несколько известно автору, эти были первые опыты, когда антитокическая сыворотка, даже слабого титра, будучи введена в кровь, проявил свое специфическое действие в организме. Опыты на кроликах с антитокической дифтерийной сывороткой при "буксировании" после заражения их дифтерийным ядом дали автору также вполне благоприятные результаты. Напротив, опыты со столбняком на кроликах не дали практических результатов,—все животные погибли, хотя опытные кролики переживали контрольных.

1) Гигиена и Эпидемиология, 1927, № 3.
2) Цит. по Сперанскому.
3) То же.
4) Это название автор считает носовем удачным.
Объяснение это, очевидно, той особо-прочной связи с мозговым веществом, кото-}

ской отличается тетанический токсин.

На заболевших людях автор также имел ряд успехов от применения специ-}

фической сыворотки, вводимой в позвоночный канал после предварительного ма-}

чного пространство "гиперемии ех васко". Изведение больного количества жидк-}

под наркозом. Антитоксическая сыворотка в случаях общего столбняка вводилась 

сульфиду поясничным проколом, после медленного изведения 40—100,0 куб. с.

цереброспинальной жидкости, причем введение ее повторялось, с промежутками 

в 1—2 дня, всего до 4—5 раз, вплоть до ясных и более длительных признаков 

улучшения. Уже после первого введения припадки столбняка через 10—12 час.

ослабевали, но затем снова усиливаются, чтобы вновь уступить повторной операции. 

Из 5 больных, лечимых таким образом, умерла лишь одна, у которой не удалось 

добыть цереброспинальной жидкости (punctio sica).

Опыты с дигезентричным токсином, произведенные д-ром Пономаревым 

под руководством проф. Сперанского, у здоровых кроликов дали такие же ре- 

зультаты, т. о. животные или не заболевали вовсе, или заболевали, но слабее, чем 

контрольные. Зато, когда антитоксическая сыворотка вводилась в кровь уже забо- 

левшим кроликам (при кровном поносе и особенно после появления параличных 

симвтомов), то эффекта не получалось. Во многих случаях такого рода получались 

впрочем и хорошие результаты при одновременном введении сыворотки в кровь 

и в субдуральное пространство. 4 раза получалось выздоровление у кроликов, 

которые лежали "пластом". При одном субдуральном введении эффект был слабее. 

Такое субдуральное введение сыворотки не требовало отсасывания большого коли- 

чества цереброспинальной жидкости и разрежения пространства в мешке; автор 

объясняет это тем, что, повидимому, дигезентричный токсин связывается с мозговым 

веществом непрочно и легко уступает перед большей жидкостью к нему антитоксина.

Из приведенных опытов видно, что не все токсины и не все антитоксины 

однаково прочно связаны с мозговым веществом, напр., дифтерийный токсин 

связывается с мозгом настолько непрочно, что даже подкожное и внутримшее 

введение сыворотки даст хорошие результаты. Наоборот, токсин столбняка 

настолько прочно связано с мозговым веществом, что от введения противостолб- 

ничной сыворотки обычным путем получается только относительный эффект, а 

лишь после значительного отсасывания цереброспинальной жидкости эффект бы-

вает хороший. Есть сыворотки (поливалентная стрептококковая, стафилококковая, 

тифозная, холерная и др.), которые действуют настолько неверно, что от примене-

ния их совсем уже отказались.

Отчего же зависит такая инактивность этих сывороток в организме живот-

ного, тогда как в vitro они отчетливо проявляют свое действие? Возможно, говорит 

Сперанский, что перечисленные сыворотки не встречаются с своим вирусом, 

по крайней мере той частью его, которая проникает в мозговую ткань и более или 

менее прочно связалась с ней. Пример дифтерийной сыворотки, которая проявляет 

свойство даже будучи введена в небольшом количестве под кожу, за- 

ставляет предполагать, что это зависит не от особых свойств самой сыворотки, 

а от новых свойств ее токсина, который идет впереди и разрушает ГЭБ. Ин- 

вестио, что вслед за дифтерийным токсином в район центральной нервной системы 

могут проникать многие вещества, которые обычно проникают туда не в состоя- 

нии. Проникая в мозг, дифтерийный токсин, как обычно выражается автор, "ос- 

тавляет дверь за собой открытой", другие же токсины проникают туда и "дверь 

за собой закрывают".

Проф. Сперанский придает большое значение специфическому пораже-

нию нервной системы при всех инфекционных заболеваниях, особенно при мозго- 

ных оросях в последних, когда местные явления не успевают еще развиться. 

В обычных случаях, к сожалению, симптомы поражения нервной системы при- 

знакаются лишь такие, нервный характер которых стоит вне сомнения (помрачение 

сознания, бред, боля, параличи и проч.; но ими далеко не исчерпываются расстрой- 

ства функций головного и спинного мозга. Наши сведения, напр., относительно 

трофической и вегетативной функции мозга еще недостаточны, и может быть, то, 

что иногда считается осложнением или местным поражением, есть ничто иное, как 

результат расстройств этих функций центральной нервной системы.

Это побудило автора произвести испытание всех специфических сывороток 

при тех или иных условиях проникновения их в район центральной нервной си-
стемы. Так как многие инфекционные заболевания не могут быть воспроизведены на животных, то он обратился к клиническому материалу,—исходя из того соображения, что эксперименты такого рода в худшем случае дали бы только отрицательный результат, не принеся никакого вреда больному. До сих пор им были произведены опыты на скарлатинах, корьных больных и на больных с эпидемическим цереброспинальным менингитом.

Антикардиолиазная сыворотка обычно должна быть вводима в больших количествах (100—200 куб. с.); очевидно потому, что вещества, не проникающие через ГЭБ, временно получают эту способность, если концентрация их в крови будет выше известного "порога проникновения". Лишь тогда они проникают в район центральной нервной системы, что является необходимым условием их действия. Если же антитоксин подвести к мозгу, то специфическая реакция проявится скорее и при меньшем количестве сыворотки. Опыты с этой сывороткой были произведены на 9 тяжелых больных. Предварительно у них выпускалось 15—20 к. с. цереброспинальной жидкости, затем интраназально вводилось 4—10 куб. с. сыворотки. Одн больной умер от отека легких прежде, чем реакция могла еще проявиться. Полный эффект (падение t, исчезновение сыпи, резкое улучшение общего состояния) получался в 5 случаях из 8; в 2 остальных случаях эффект был неполный, а в одном его вовсе не получилось ни при люмбальном, ни при внутримышечном введении большого количества сыворотки. Лучше, по наблюдениям автора, вводить 8—10 куб. с. сыворотки, хотя и при небольших дозах (4—5 куб. с.) происходит понижение t, исчезает сыпь и пр.

При заболевании корью детей проф. С. Б. Р.анский применил с лечебной целью субдуральное введение сыворотки реактивационетов в 2 случаях. У контрольных больных, которым сыворотка вводилась в кровь, проявления болезни начались на следующий день, при введении же сыворотки субдурально, у первого больного, где сыворотка была введена в достаточном количестве, сыпь и повышение понялись только на пятьий день, держались сутки, и затем все явления исчезли. Во втором случае сыворотка была введена начиная высыпания при существовании шевронического фокуса; через 12 часов после того t упала ниже нормы, шевронический фокус исчез и уже через сутки не мог быть обнаружен. Таким образом, если и при наличии свободного токсина в организме (случай первый, когда сыворотки было введено недостаточно), блокирование одной только центральной нервной системы прерывает симптомы болезни, то надо предположить, что корь есть ничто иное, как корковое заболевание мозга.

Эпидемический цереброспинальный менингит представляет интерес потому, что при нем антител находится в мозгу. А так как выход из района мозга является бесприятственным, и вещества, находящиеся в центральной нервной системе, могут попадать в кровь, то можно предположить, что при этом заболевании иммунизация начинается уже с момента самого заболевания и что к началу искусственной иммунизации в крови уже находится известное количество специфических антител; но оно мало, почему и не достигает "порога проникновения" в район центральной нервной системы. Искусственная же иммунизация служит как бы толчком для начавшегося уже процесса активной иммунизации. Больной таким образом как бы "поспать свою антитк в кармане и не имеет только ключа, чтобы воспользоваться ею". Метод бактериовакцинации дает возможность временно нарушить ГЭБ и посредством перорального приема специфических антител в район центральной нервной системы. Лечение с применением бактериовакцинации обычно присоединяется, при менингите, к тем пункциям, которые при этой болезни приходится постоянно делать для извлечения цереброспинальной жидкости. Все 4 случая автора кончились выздоровлением, хотя все были тяжелыми. Начинать бактериовакцинацию можно с конца 2-й или начала 3-й недели заболевания.

В дальнейшем проф. С. Б. Р.анский поставил себе целью изучить действие и других специфических сывороток (струп- и стафилококковых, брюшнотифозной, холерной и пр.) и попытаться способом бактериовакцинации лечить сифилис в том периоде, когда начинают развиваться мозговые явления, так как надо предполагать, что в это время имеющийся в организме антител не образует достаточного количества антител, которые могли бы проникнуть за "порог проникновения", почему мозг является единственным неиммунным органом, тогда как остальная организма сохраняет иммунитет и препятствует реинфекции. Метод бактериовакцинации дает надежду на то, что ГЭБ будет нарушен во всю толщу мозга, и специфические вещества смогут подходить к самому месту поражения.
Сперанский считает, что прежде-временные переносить данные экспериментальных исследований в клинике, но полагает, что уже теперь можно высказать ряд предположений:

1. Появление симптомов т. н. общего заболевания указывает на то, что в болезненный процесс вовлечена центральная нервная система. Таким образом, проявлений токсином или вирусом в район этой системы и связь его с мозгом есть первое и необходимое условие общего заболевания.

2. Многие болезненные явления, которые рассматриваются как местные симптомы, не суть таковые по существу, а только указывают на поражение соответствующего отдела центральной нервной системы. В связи с этим понятие о нервных (мозговых) симптомах должно быть расширено. Исчезновение некоторых местных симптомов после иммунизации только одной центральной нервной системы указывает на то, что т. н. "местные реакции иммунитета" являются в значительной мере функцией этой системы.

3. Специфическое свойство многих, — а может быть, и всех, — лечебных сывороток проявляется только при условии проникновения их в район центральной нервной системы. Поэтому необходимым условием пассивной иммунизации являются иммунизация этой системы.

4. Связь токсинов (вирусов) с мозговым веществом неоднократно прочна: в одних случаях она может быть расторгнута легко (диэнцефalia, кора и др.), в других — лишь с большим трудом (столбняк, бешенство); в связи с этим и приема применения антитоксинов должны меняться.

5. Можно думать, что извлечение цереброспинальной жидкости с образованием "гиперемии его органа" временно изменяет точ жидкости в мозгу, и доступ введенных в субарахноидальное пространство веществ к глубоким частям мозга увеличивается.

6. Прием "буксирующих" влечет за собой временное изменение проходимости сосудистой стенки в сосудах мозга (временное разрушение барьера); при этом увеличивается доступ к мозгу находящихся в крови антигенов.

7. Можно думать, что тех процессов, при которых антиген находится в мозге, необходимым условием излечения является известная концентрация специфических антигенов в крови, достигающая "порога проникновения" в район центральной нервной системы. Если этот порог не достигнут, то организм может по-прежнему и при наличии специфических антигенов в крови. Таким образом в организме степени иммунитета неоднокова для всех организмов, — в то время, как все органы оказываются защищенными со стороны крови, мозг может оказаться беззащитным.

8. В некоторых случаях введения специфических сывороток в район центральной нервной системы в организме остаются в силе условия развития активного иммунитета (корь).

9. Можно думать, что при субэуралиальной применение сыворотки реконвалесцентов (корь, сыпной тиф) нужно считаться с групповой реакции крови. Во всяком случае реакции на введение одной и той же сыворотки в разных случаях бывает различна.

В заключение проф. Сперанский повторяет, что считает еще преждевременным переносение имеющихся у него наблюдений в клинику, хотя его опыты на больных и не давали плохих побочных результатов и осложнений. Он советует оставлять буксирование для тех процессов, когда антиген находится в мозгу. Сюда он относит также детские токсикозы, когда антиген, находящийся в крови, не достигает порога проникновения в мозг. Во всех других случаях рекомендуется делать субэуралиальные инъекции, при которых, если и бывает раздражение, то оно быстро проходит от наркотических средств. В тяжелых случаях дифтерии и скарлатины буксирование опасно и бесцельно, так как обыкновенно цереброспинальной жидкости бывает мало. В самых тяжелых случаях, особенно в состоянии агонии, конечно, никто уже помочь не может. Полезное действие сыворотки начинается через 8—12 часов, но токсические свойства ее могут проявиться и раньше, и тогда, как бы ни вводили ее, результат будет плохой.
ществам, цирулирующими в крови, научит вовремя блокировать мозг и ограждать его от поступления ядовитых веществ, то, надо думать, течение многих инфекционных болезней примет другой характер и не будет иметь столь грозных последствий, какие оно имеет теперь, благодаря влиянию яда на мозговые центры. Этим же способом можно будет обрывать течение т. н. "локализованных" процессов, как показали опыты проф. Сперанского с коревой пневмонией, а также и профилактика болезней, может быть, даст более реальные результаты.

В заключение считаю долгом выразить благодарность д-ру Н. Н. Благовещенскому за указания и предоставление литературы.

---

Рефераты.

а) Туберкулез.

201. Лечение легочной чахотки препаратами золота. С. Клинеberg (Fortschr. d. Thcr., 1927, № 23), применяя у 42 больных кризолган и санокрин, в виде вприскиваний, получил настолько благоприятные результаты, что совершенно оставил теперь лечение туберкулезом, практиковавшееся им 20 лет. Только в 4 случаях у него не получилось никакого улучшения, но всех же остальных оно наблюдалось, и частью очень значительное, с большим наростами веса. При этом санокрин оказался действующим энергичнее, чем кризолган.

С. С-в.

202. О происхождении пневмоплевритов. Как известно, Граэтц объясняет развитие пневмоплевритов при искусственном пневмотораксе переходом воспалительного процесса с tbc очагов на близлежащую плевру, вследствие сжатия легочного воздухом, причем экссудат образуется чаще непосредственно после первых же вдыханий. В других случаях жидкость появляется через 4—8 мес., нося характер транссудата. Следовательно, этиология плевритов неодинакова. Мяерсон (Вопр. Туб., 1927, № 11), изучив этот вопрос экспериментально и клинически, пришел к выводу, что поздние транссудаты образуются вследствие изменения эндо-плеврального давления под влиянием нарушенной резорбции газа в измененной фиброзными разрастаниями легочной ткани (длительное сжатие воздухом ведет, как известно, к прорастанию соединительной тканью не только пораженных, но и здоровых частей коллагерированного легкого). Эти транссудаты, вследствие облитерации устьев Reeklinghausen'a и утолщения плевральных листков, рассасываются с большим трудом. Автор для избежания этого осложнения рекомендует не стремиться к полному сжатию легкого, а в каждом случае находить оптимум давления, при котором происходит уменьшение токсических явлений. Этого оптимума эндо-плеврального давления и следует в дальнейшем придерживаться. В своих случаях автор методикой парциального пневмоторакса добился уменьшения пневмоплевритов с 45% до 5%.

М. Ойфехах.

203. Сухоходение при tbc костей. Бейг (Zenitr. f. Chir., 1927, № 49) удавалось получать иногда поразительное улучшение костного tbc путем ограниченного введения жидкостей (в течение 14 дней только чашка молока утром и чашка чая вечером, больше никакой жидкости). Кроме бугорчатки, способу этому поддаются и другие заболевания костей. V. C h l u m s k y (ibid., 1928, № 6) также заметил, что уменьшение введение жидкостей до 400 куб. стм. в сутки (на 4 недели) и запрещение соли, прясостей, колбас и консервов часто влияют при хирургической бугорчатке очень благоприятно на общее состояние больных.

С. С-в.

б) Физиотерапия.

204. Успехи радиотерапии описывает Бей (по Ber. ü. d. ges. Gyn., Bd. XII). Значительным прогрессом в этой области является введение радио в толщу опухоли при помощи игол. Обязательным условием такой терапии является точное определение границ опухоли, что при раках матки и параметриев достигается с помощью чревосечения; таким образом возникает как бы особый вид хирургии, целью которого является создание доступа для приложения радио. Так как продолжительность деления клеток при раках достигает 15—20 дней, то отсюда вытекает