Осложнения: плеврит, эмпиема, спонтанный пневмоторакс, легочное кровотечение, амилоидоз.

В диагностке хронической пневмонии может быть указан ее патогенез: металпневмоническая, метатуберкулезная, бронхоэктазитическая, на почве гипоплазии легкого и т. д.

II. ХРОНИЧЕСКИЙ БРОНХИТ

Стадии — I, II, III.

Фазы — обострение, ремиссия.

Выделяются: с бронхоэктазами с указанием локализации, с бронхоэктазами синдромом (степени — A, B, V).

В диагностке могут быть указаны этиология и патогенез.

Осложнения: эмфизema, дыхательная и сердечная недостаточность.

III. ОСТАТОЧНЫЕ ИЗМЕНЕНИЯ: ограниченный пневмоклеторез (в пределах одного сегмента), распространенный пневмоклеторез, вторичные кисты. В диагностке указывается сегментарная или долевая локализация.

Примеры формулировки диагноза.

1. Хронический бронхит, I стадия B, фаза обострения.

2. Хронический бронхит, II стадия A, фаза ремиссии.

3. Хроническая волнофокусная пневмония III сегмента справа, I стадия, фаза обострения. Хронический бронхит, II стадия B.

4. Хроническая пневмония с бронхоэктазами средней доли справа, II стадия, фаза ремиссии. Хронический бронхит, II стадия B.

5. Хроническая двусторонняя многофокусная пневмония с бронхоэктазами, III стадия. Хронический бронхит, III стадия B (или B). Эмфизема легких. Дыхательная недостаточность, II ст. Легочно-сердечная недостаточность, II ст.

6. Метапневмонический пневмоклеторез средней доли справа, хронический бронхит, I стадия.

7. Вторичная металлнестмическая киста III сегмента справа.

Мы сознаем важность многих высказанных здесь положений, однако надеемся, что некоторые из них могут быть учтены при окончательной разработке классификации болезней системы дыхания. Объем статьи не позволил остановиться на многих деталях — клинических критериях диагностики отдельных форм и стадий пневмонии и бронхита, функциональных показателях при синдроме обструкции A, B и V и т. д. Поэтому изложены лишь принципы построения предлагаемой классификации.

ЛИТЕРАТУРА


Поступила 18 декабря 1980 г.

ОБЗОРЫ

УДК 616.379—008.64—02—032

ЭТИОЛОГИЯ И ПАТОГЕНЕЗ САХАРНОГО ДИАБЕТА

М. И. Балаболкин, Л. И. Гаврилюк

Кафедра эндокринологии (зав. — проф. М. И. Балаболкин) Московского стоматологического медицинского института им. Н. А. Семашко

Эпидемиологические исследования, проведенные в СССР и в различных зарубежных странах, показывают, что заболеваемость сахарным диабетом составляет от 1% до 3%. Несмотря на успехи, достигнутые в области диabetологии, вопросы этиологии и патогенеза сахарного диабета требуют дальнейшего изучения.
Более или менее ясен механизм возникновения сахарного диабета при механическом повреждении или удалении поджелудочной железы (так называемый деструктивный сахарный диабет), однако и в этих случаях дальнейшее развитие болезни зависит от множества внешних и внутренних факторов, определяющих по существу исход болезни.

У больных сахарным диабетом, получающих инсулин, лечебный эффект последнего постепенно снижается в результате образования антиинсулиновых антител [1,8], особенно при продолжительной инсулинотерапии [2] или при необходимости употребления массивных суточных доз гормона [21, 22].

Клинические наблюдения получили подтверждение и в ряде экспериментальных исследований на животных [3, 44]. В дальнейшем появились сообщения об обнаружении циркулирующих антиинсулиновых антител в крови больных сахарным диабетом, никогда не получавших инсулинных препаратов [5, 25, 35].

Однако результаты всех этих исследований долгое время считались недостаточными для того, чтобы признать аутоиммунный компонент механизма развития сахарного диабета. Правда, уже в 1965 г. появились сообщения о наличии так называемого инсулина (периостровковой лимфоплазмоцитарной инфильтрации) у больных ювенильным сахарным диабетом, умерших вскоре после начала заболевания и не леченных инсулином [15]. Таким же косвенными доказательствами аутоиммунности сахарного диабета были признаны и многочисленные клинические данные об относительно частом сочетании сахарного диабета с другими заболеваниями, аутоиммунный характер развития которых уже к тому времени сомнению не подвергалась. Так, развитие в детском или юношеском возрасте инсулино зависимого сахарного диабета наблюдалось с большей частотой у страдающих такими болезнями, как пернициозная анемия [20], тиреотоксикоз [18, 36], тиреоидит Хассимото [9, 26], первичный гипотиреоидизм [29, 40], аутоиммунная болезнь Аддисона [11, 20], аутоиммунный гипопаратиреоидизм [4, 20]. Многие исследователи, однако, отмечали, что названные болезни в некоторых случаях клинически проявляются недостаточно четко, но тем не менее при таком сочетании выявляется высокий титр специфических антигенных антител.

Одновременно с приведенными сообщениями в литературе появились данные о наличии у больных сахарным диабетом специфических противогуморальных антител. Так, антитела в сыворотке крови, направляемые против щитовидной железы, обнаруживались в 2—4 раза чаще у детей, страдающих инсулино зависимым сахарным диабетом, чем у остальных детей [20, 31, 43]. При этом в подавляющем большинстве случаев повышение количества противогуморальных антител наблюдалось у лиц женского пола с инсулино зависимым ювенильным сахарным диабетом [24b].

Определенный интерес представляют сообщения о выявленной почти у трети больных инсулино зависимыми сахарным диабетом клеточной антигликанкреатической гиперсенсibilизации [24a, 30]. Обнаруженное изменение количества лимфоцитов у больных сахарным диабетом объясняется специфической Т-лимфоциты против индексных панкреатических антител или против их секрета [23]. Несколько позже в литературе появились сообщения о том, что общее число лимфоцитов и количество Т- и В-клеток у больных инсулино зависимым ювенильным сахарным диабетом не отличается от таковых у здоровых лиц, но в возрасте больных, равно как продолжительность заболевания и длительность инсулинотерапии, также не влияют на абсолютное и относительное количество различных типов лимфоцитов, за исключением В-клеток, число которых находилось несколько повышенным у детей с возрастом более 14 лет [17]. Однако в исследованиях Селями и сотр. [39] указанные данные не подтверждались. Авторы обследовали 39 больных ювенильным сахарным диабетом и обнаружили, что процентное содержание Т- и В-лимфоцитов было значительно сниженным при плохо сбалансированном диабете. Такого рода результаты были получены и в экспериментах на мышах с альбакановым диабетом [34].

Таким образом, во всех упомянутых выше исследованиях фигурировал ряд важных доводов (наличие инсулина у предварительно иммунизированных экспериментальных животных и у больных сахарным диабетом, не лечившихся еще инсулином; присутствие антиинсулиновых антител или выявление быстрых реакций по отношению к накрепатическому антигену; частое сочетание сахарного диабета с клиническими и (или) иммунологическими признаками других аутоиммунных заболеваний), которые с большой вероятностью предполагали, но не доказывали аутоиммунную природу сахарного диабета [28].

И только в последнее десятилетие были получены прямые доказательства, позволяющие
ляющие причислить сахарный диабет, по крайней мере некоторые его клинические формы, к заболеваниям, в основе развития которых лежит аутоиммунный механизм: описана антигена к эндогенному инсулину [19] и аутоантитела, направленные против клеток островков Лангерганса [6]. Специфические противовопротив директивные аутоантитела были обнаружены у 60—85% детей [20], у которых инсулинозависимый сахарный диабет только что был вызван (при 0,5% у остального населения). Кроме того, некоторые исследователи высказали предположение, что продолжительное лечение инсулином может вызывать образование антител не только к эндогенному винногому, но и к эндогенному инсулину [16].

По данным Хираки и соавт., Океды и соавт. [19, 33], у всех наблюдавшихся ими на протяжении нескольких лет больных, не получавших инсулина, были различной выраженности гипогликемические состояния, обнаруживались антиинсулиновые антитела, гиперинсулинемия, снижение толерантности к глюкозе и диффузная гипертрофия островков Лангерганса. Гиперинсулинемия, который находится в основе гипергликемических состояний, объясняется авторами гиперпродукцией эндогенного инсулина, стимулированной периферической недостаточностью, так как он блокирован антителами; периодическое вывобождение инсулина из комплекса антиген—антитело, происходящее в результате определенных причин, создает состояние гипогликемии. Появляется парадоксальное снижение толерантности к глюкозе, развитие которого зависит от циркулирующего на периферии неактивного инсулина. Эти изменения приобретают иногда характер истинного сахарного диабета.

Некоторые авторы придерживаются мнения, что признаки аутоиммунного генеза присущи только сахарному диабету, развивающемуся в детском и юношеском возрасте [42]. Поскольку органоспецифические панкреатические аутоантитела взаимодействуют в одинаковой степени как с β-, так и с α-клетками, естественно предположить, что автиммунная первостепенная лимфоцитарная инфильтрация (инсулин) отражается на секреции обоих гормонов (инсулина и глюкагона). Таким образом, можно вывести одно из кардиальных отличий между инсулинозависимым детским (или юношеским) сахарным диабетом аутоиммунной природы и диабетом наследственным, при котором глюкагон присутствует в нормальных количествах или даже в избытке.

Возникает естественный вопрос: является ли обнаруженные во всех перечисленных случаях специфические аутоантитела причиной или следствием поражения островков поджелудочной железы, так как в некоторых случаях между островковым (т. е. аутоиммунным) поражением и появлением сахарного диабета проходит тот или иной период времени.

Ряд исследователей считает, что аутоиммунный механизм при сахарном диабете вызывается, в частности, вирусной инфекцией только в определенных наследственных условиях. В подавляющем большинстве исследований обнаружение аутоантител совпадают, как правило, с клиническим развитием симптомов сахарного диабета. При циркулирующих антигене могут присутствовать в крови и до развития болезни [141]. Так, Bommart и соавт. (1974) нашли противовопротивные аутоантитела у 2% больных за год до развития у них сахарного диабета [6]. По наблюдениям Мелина и соавт. (1958), 4 из 40 детей, страдавших эпидемическим паротитом, заболевания сахарным диабетом спустя соответственно 1, 3, 8 и 9мес с момента появления у них паротита. Forrest (1971) сообщал о сахарном диабете у страдающих врожденной корой детей в возрасте после первого года жизни. Эти данные показывают, что возможно какой-то латентный период между появлением аутоантител и развитием сахарного диабета, т. е. период, который был бы необходимым для развития аутоиммунной ответной реакции [22].

Вместе с тем Саманти и соавт. (1977) отрицают какое-либо причинное значение вирусов, в частности врожденной краснухи, и Коксаки В, в возникновении сахарного диабета у людей. Авторы определяли титр антител против вируса Коксаки В и врожденной краснухи у 180 здоровых лиц, у 236 больных сахарным диабетом с коротким периодом заболевания и у 108 больных с более длительным периодом. Антитела к указанным вирусам чаще встречались у здоровых, чем у больных сахарным диабетом. При ювенильной форме сахарного диабета с длительным течением процент обнаружения антител к данным вирусам был даже значительно меньше, чем у здоровых лиц или у больных с более коротким периодом заболевания.

В результате определения уровня инсулинсвязывающих антител в сыворотке крови 10 детей, больных сахарным диабетом, было обнаружено, что концентрация
антитела значительно увеличивались после перенесенных детьми вирусных и вирусо-
бактериальных инфекций, а также после лечения поливакциной [41].
В последнее время все больше обращает на себя внимание особая частота сочета-
ния аутоиммунных заболеваний с различными тканевыми антителами, в частности с
группой HLA-B8 (human leucocyte antigen). Сахарный диабет является болезнью, при
которой наследственная предрасположенность имеет большое значение [32]. При
ювенильном инсулинозависимом сахарном диабете находили довольно частое сочета-
ние с HLA-B8 (54%), а также с BW15 и BW18. Кроме того, выраженная связь была
выявлена и с аллелями DW3 и DW6 в локусе D-HLA [10].
Было предложено несколько объяснений такой примечательной ассоциации меж-
ду принадлежностью к системе HLA и рядом аутоиммунных заболеваний, в частности
сахарным диабетом. Так, допускается, что молекулы HLA сами становятся своеоб-
разными рецепторами некоторых вирусов. Кроме того, допускается возможность появ-
ления функциональной аномалии одного из генов, ответственных за иммунологи-
ческий ответ (ген Ir), вследствие чего он способствует образованию патологических (так
называемых фасилизирующих) антител; последние не только не содействуют удалению
инфекционных (или токсических, в том числе и аутотоксических) агентов, а, наобо-
рот, благоприятствуют их внедрению [7, 10]. Другие же исследователи [38] допус-
кают, что влияние гена Ir и антигена HLA-B8 идет роль в генезе сахарного диабе-
тта только в ограниченном числе случаев.
Наконец, была предложена гипотеза, согласно которой юношеская форма сахар-
ного диабета у лиц без ожирения не наследуется как таковая, а развивается у лиц
с генетическим предрасположением к нему под воздействием разнообразных факторов
окружающей среды и по крайней мере частично связана с антигенами лейкоцитов
человека. Гены, регулирующие иммунологические реакции этой системы, вызывают
изменения реакции Т-клеток на факторы окружающей среды, что непосредственно
или через аутоиммунные механизмы приводит к разрушению β-клеток [32].
Таким образом, выявление и изучение принадлежности людей к антигенно-ткане-
вой группе HLA (в частности, B8) представляют большой интерес ввиду возможности
индивидуальных или семейных прогнозирований ряда заболеваний, в данном случае
сахарного диабета, дифференциального диагноза в сложных клинических случаях, а
также организации и проведения активных профилактических мероприятий [7].

ЛИТЕРАТУРА

1. Михайлова С. К., Иванова Т. С. Пробл. эндокринол. 1966, 1—2.

Поступила 3 ноября 1980 г.