Состояние периферической кровеносной системы при инфекционных заболеваниях 1).

Ф. Д. Агафонов.

Состояние кровообращения и причины его расстройства как при хронических, так, в особенности, при острых инфекционных заболеваниях всегда живо интересовали как клиницистов, так и патологов. Со времен Лейпце, который первый обратил внимание на слабость сердечной мускулатуры у умерших от лихорадочных заболеваний и подчеркнул, как Лоуис, слабость и хомкость сердечной мышцы, стали искать причин этих расстройств в состоянии сердечной мускулатуры. Существенным успехом в изучении заболеваний сердечной мышцы при инфекционных заболеваниях явилось учение Вирхова о паренхиматозном воспалении, подтвержденное Ботчеем для тифа и Моселем для дифтерии. В то время как указанные авторы говорили лишь о паренхиматозном воспалении сердечной мышцы, Навем у удалось установить при тех же условиях также интерстициальный миокардит, а в дальнейшем и продуктивный эндокардит коронарных сосудов, который, вызывая тромбоз сосудов, мог быть причиной внезапной смерти в течение тифа. С этого времени при явлениях расстройства кровообращения главное внимание стали обращать на состояние сердечной мышцы и на ее функциональную способность и в состоянии сердечной мышцы искать объяснения всех расстройств со стороны сердечно-сосудистой системы как при хронических, так и при острых заболеваниях. Данные, полученные Навем, были подтверждены и другими авторами (Мартин, Ромберг). Но в дальнейшем несоответствие клинических симптомов с состоянием сердечной мышцы вызвало недоверчивость этой теории. Выяснилось, что при каждой из этих патологических изменений полость сердца, что жизнь может продолжаться при самых тяжелых поражениях миокарда (Питом), с другой стороны, при внезапном падении кровяного давления и явлений коллапса сердечная мышца может быть в очень хорошем состоянии. Следовательно, нельзя все явления расстройства кровообращения объяснять лишь состоянием сердечной мышцы.

Ромберг имеет объяснения этих расстройств при острых инфекционных заболеваниях в состоянии сосудистого тонуса, думая, что в данном случае интоксикация влияет на высшие сосудовидительные центры, что вызывает парез сосудов брюшной полости и затрудняет работу сердца. Экспериментами на животных совместно с Хасслер, Ролли и др. он действительно доказал, что токсикоз при острых инфекциях, действуя на высшие сосудовидительные центры, вызывает парез и расслабление сосудов брюшной полости, что и вызывает падение кровяного давления, и то время как сердечная мышца еще находится в сравнительно удовлетворительном состоянии и может выполнить даже усиленную работу.

Парадоксы центров, как следствие отравления токсинами, и падение при этом кровяного давления были подтверждены в дальнейшем Эллингером и Адлером при работах с дизентерийным токсином. Тот же результат получил и Ролли, работая с токсином дифтерии.

Если мы примем во внимание громадную емкость сосудистого ложа, мы легко увидим, насколько положение Ромберга имеет под собой твердую почву. Влияние токсинов на сосудовидительные центры при острых инфекциях, впервые установленное Ромбергом, очевидно не может вызывать серьезных возрастаний. Для случаев острого понижения кровяного давления, внезапного наступле-

1) Пробная лекция на соискание звания приват-доцента, прочитанная 10 мая, 1929 г. в заседании Совета Мед. фах. Казанского гос. у-та.
ния коллариса это несомненно, но достаточно ли оных поражений центров для того, чтобы вызвать длительное расстройство кровообращения, держателное падение кровяного давления. Мы знаем, что можно совершенно устранить влияние центров, напр., перерезкой спинного мозга. Это вызовет резкое расширение сосудов и падение кровяного давления. После двухсторонней перерезки n. splanchnici кровяное давление также понижается в значительной степени. Но затем, пониживающий во время этих опытов тонус сосудов постепенно восстанавливается и сосуды снова начинают реагировать на раздражение (Land ois). Сосуды, совершенно обособленные от центральной нервной системы, снова приобретают свой потерянный тонус (Tigerstedt).

L. Aschhoff также признает, что тонус сосудов отчасти регулируется в самих париетальных сосудах независимо от центральной нервной системы.

Важнейшим свойством сосудов, как это давно известно, являются сократительность и эластичность их стенок, причем эластичность стенок слаба, но совершена, т. е. они легко подаются растяжению, но также и легко возвращаются к своей первоначальной форме (Land ois). Способность к сокращению стенок артерий и вен, благодаря присутствию в них мышечных элементов, признается всеми. Сократительность капилляров, на основании их гистологического строения, подвергалась сомнению. Все физиологи, наблюдавшие изменения просвета капилляров, поддерживают взгляд Stricker'a (1876), что это изменение внутреннего просвета вызывается набуханием протоплазмы, следовательно в данном случае оказывают влияние осмотические или имбибиционные процессы, а не самостоятельного сокращение стенок.

Исследованиями Голубева, а за ним Rognet (1873), Mayer, Wittmahr, Zimmermann'a были установлены особенности сократительные элементы, расположенные на стенках капилляров, носившие теперь название «клеток Rognet». Клеткам Rognet в настоящее время приписывается способность самостоятельного изменения просвета капилляров. Сосудоустяжующие нервы более крупных сосудов относятся к симпатической системе, причем по Eugling'y (1908) в самих сосудах не имеется ганглиозных клеток, при выключении от доральных симпатических тазов подвергается дегенерации все сплетение. По исследованиям Steinach'a, Kahl'a, Gukera, Leric'h, Poljcard (1920), Krogh (1922) и другой исследователь глубоких нервов капилляров также относятся к симпатической системе. Есть основания предполагать, говорит Krogh, что каждая отдельная клетка Rognet оказывает симпатическим волокном; по этому волокну происходит передача раздражения.

Восстановление тонуса в крупных сосудах и капиллярах идет с неоднаковой быстротой. Если выключить сосудоустяжующее влияние симпатических нервов, то артерии через несколько дней снова восстанавливают свой тонус, в то время как капилляры очень медленно возвращаются к своему нормальному состоянию и долгое время остаются расширеными.

Если мы будем рассматривать каждую систему (артериальную, капиллярную, венозную) в отдельности, мы увидим, что каждая из них живет самостоятельной жизнью, весьма сложной, как будто независимой друг от друга, подвергающейся всевозможным влияниям и своеобразно отвечающей на различные воздействия.

В первую очередь обращает на себя внимание артериальная система, наиболее активная, особенно отчетливо помогающая сердцу в его работе — в продвижении крови по организму. Ее значение в этом отношении настолько ярко бросается в глаза, что за последнее время появилась даже теория, присоединяющая ее вновь активные, следующие за сокращениями сердца и координированные с ними перистальтические сокращения продвигающие кровь к периферии. Эта теория «периферического сердца», выдвинутая Grützenachom, Hasaibreichom и Яковским, защищается в настоящее время еще многими клиницистами, хотя ее отправные точки уже отвергнуты более точными экспериментальными исследованиями.

Значение артериального тонуса для продвижения крови вперед — неоспоримо, но менее важно значение венозного тонуса для обратного возвращения крови к сердцу. Значение тонуса вен в данном случае станет нам особенно ясным, если мы применем во внимание, что нынешние венозные тонуса для обратного возвращения крови несколько большие венозные тонусы, даже в том случае, если они достаточно сильны. Необходима необыкновенно точная, строгая и сознательная координация в изменениях тонуса этих сосудов, чтобы при сравнительно слабой мускулатуре разрешить вопрос о продвижении всей массы крови к сердцу. В данном случае, конечное, играет роль также присасывающаяся работа сердца, движений грудной клетки и т. д.
Значение капилляров для кровообращения, повидимому, ограничивается, главным образом, ролью распределительной. Колебание капиллярного тонуса автоматом, называемое колебания тонуса артерий и, несомненно, имеет выдающее значение для регуляции местного кровообращения.

Говоря о значении периферических сосудов и их тонуса для регуляции кровообращения, надо упомянуть также и лимфатическую систему. Эта система, по которой направляются лимфатические сосуды очень близко к строению вен, следовательно, колебания тонуса возможны и в лимфатических сосудах. При ослаблении тонуса лимфатические сосуды принимают в себя волну лимфы и разгружают, таким образом, ткани и кровеносную систему, при повышении тонуса загружаются и опускаются. Нарушение тонуса лимфатических сосудов не может не отразиться на тургоре тканей и игрести, не всей вероятности, не последнюю роль в образовании местных, а может быть, и общих отеков.

Мы видим, таким образом, что каждый отдел кровеносной системы исполняет свою работу, имеет свою функцию, и нормальное состояние кровообращения может быть при одной частичной координации в работе всей системы в целом, начиная с центрального насоса сердца и кончая мелкими капиллярами на периферии. Мы видим, что, и не приводя многочисленных примеров периферической роли «периферического сердца», мы отводим громадную роль как воспроизвольным факторам при продвижении крови. Малейшие колебания тонуса всей сосудистой системы в целом или какого-нибудь ее отдела неминуемо будут отражаться на кровообращении или, по крайней мере, на плазменном снабжении крови того или другого органа, а следовательно на механизме исследования местных, а может быть, и общих отеков.

При инфекционных заболеваниях, несомненно, имеется на лице многого условий, которые будут отражаться на состоянии периферической кровеносной системы, на ее тонусе. Но говоря о поствакцинальных расходованиях сердцем своей резервной силы, всегда имеющем известное влияние на судьбу периферического кровообращения при острых инфекциях, мы находим факторы, непосредственно влияющие на тонус периферической системы вне зависимости от работы сердца. К таким факторам относятся, как было уже упомянуто, впервые установленные Rombergом, поражения сосудов при различных заболеваниях; может играть роль также и витамины периферическую кровеносную систему; сюда же надо отнести и инфекционные поражения самой сосудистой стенки, выражающиеся в морфологических изменениях, влияние желез внутренней секреции, а также и действие веществ, проникающих в кровь, непосредственно на стенку сосудов, вызывающие лишь функциональные изменения без патолого-анатомического свидетеля.

Со стороны периферической нервной системы при острых инфекционных заболеваниях, по Могильно-му, наблюдаются изменения двойного рода: эссенциально-сосудистые процессы в строме и дегенеративные в нервных волокнах и ганглиозных клетках. При заболеваниях, сопровождающихся изменениями в вестибулярной системе (шумный тиф, гнойная пневмония, эпидемический грипп, различные отравления, восторг от тифа), наблюдается более раннее и интенсивное поражение в систематической системе. Это явление можно, повидимому, объяснить особенностями ее васкуляризации. Благодаря обилию сосудов при патологических изменениях в них создаются условия, особенно благоприятные, для нарушения питания ганглиозных клеток. В конечном результате нервный симпатический аппарат подвергается воздействию двух причин: расстройству питания вследствие патологических изменений сосудистых веточек, охватывающих целую группу ганглиозных клеток, и действию специфических невротропных токсинов. В обоих случаях это ведет к возникновению грушевидных клеточных поражений и грушевидных некрозов (эпиплазма, гидроцефальное, миелопатия тбс); в других случаях с разными деструктивными процессами только в нервенном аппарате (токсическая дегенерация, склероз). И в том, и другом случае будет нарушение функции периферической системы, что в свою очередь неминуемо будет отражаться на тонусе сосудов.

Теперь мы перейдем к рассмотрению условий, оказывающих влияние непосредственно на тонус самой сосудистой стенки. В лаборатории прот. Кравкова был проведен ряд параллельных исследований функциональной способности сосудов, к сокращению и расслаблению в различных участках сосудистой сети на сосудах изолированных органов, умеренных и различных заболеваний, принимая во внимание факт, что сосуды переживают организм на 2—3 дня. Исследования велись докторами Закусовым, Шкавера, С. Аничковым, Нечаевым.
Вальдмамом на сосудах различных органов. Брались коронарные сосуды, периферические сосуды на изолированном пальце, а также сосуды внутренних органов (почки, селезенки). Опыты ставились отчасти одновременно и параллельно на различных изолированных органах, взятых от одного трупа. Нас в настоящем случае интересуют лишь результаты опытов с сосудами лиц, умерших от острых инфекций.

Из сопоставления данных, полученных при этих опытах, выясняется очень интересный факт. Выясняется, что сосуды различных органов, взятые от трупа лица, погребенного от какой-либо острой инфекции, не одинаково реагируют на введение различных сосудосуживающих и сосудорасширяющих веществ, в то время как в норме эта реакция приблизительно одинакова. В протоколах этих опытов мы находим указания, что сосуды пальца мало страдают при этих заболеваниях, их реакция сохранена довольно хорошо. Коронарные сосуды в функциональном отношении поражены уже более сильно, хотя и не так резко, как сосуды внутренних органов—почки и селезенки. Сосуды же внутренних органов, в данном случае сосуды изолированной почки и селезенки, в большинстве случаев или вовсе не реагировали на проpusкаемый через них адреналин, кофеин и хлористый барий, или реагировали лишь очень слабо, непостоянно и неправильно. При острых инфекционных заболеваниях, самых разнообразных—септициемии, дифтерии, дизентерии, острей пневмонии, тифа сыпного и брюшной—физиологическая способность сосудов брюшных органов резко ослабевает или угасает совершенно. Особенно резко это функциональное поражение выражено в случаях с длительной интоксикацией, в тех случаях, где при жизни была длительная, медленно нарастающая недостаточность кровообращения. Напротив, при тех же инфекциях, но лиц, умерших от какого-либо внезапно наступившего осложнения, особенно в первые дни заболевания, это функциональное поражение сосудов выступает не так резко, реакция сосудов сохранена довольно хорошо. При хронических заболеваниях, протекающих с резкими расстройствами кровообращения, сосуды почки и селезенки оказываются также в большинстве случаев парализованными.

Сопоставляя данные этих опытов, можно прийти к заключению, что как при острых инфекциях, так и при хронических интоксикациях страдают функционально сами стенки сосудов и в первую очередь—сосудов брюшной полости. Следовательно, при расстройствах кровообращения в течении инфекционных заболеваний, в особенности при длительных и медленно нарастающих мы должны искать причины их не только в состоянии сердца, но также в значительной мере в состоянии сосудистого миотонуса. В данном случае исключительно интересным будет, может быть, состояние наиболее уязвимой части сосудистого ложа—артериокапиллярных, так как нежная стенка их особенно легко может страдать от токсемии, а поражение тонуса болезненно отражается на состоянии кровообращения. Исследование этого участка кровеносной системы в полн месте было совершенно недоступно ни для эксперимента, ни для клиники. В литературе имеются лишь единичные указания на применение метода капиллярскопии (Eurter—1876, Unna—1891). Этот обширнейший отдел, представляющий больше всего препятствий для продолжения кровообращенное, почти не принимался во внимание при суждении о состоянии кровообращения, т. к. была мало известна его физиология, до тех пор пока в 1911 году Lombar d'ом не был разработан метод просветления кожи при капиллярскопии, с помощью которого можно микроскопически исследовать кожные капилляры человека. Этот метод очень прост и заключается в том, что на кожу наносится капля какого-нибудь сильно преломляющего прозрачного масла. Масло дает ровную поверхность и, высыпая воздух из верхних слоев эпидермиса, делает его настолько прозрачным, что становится видимым кожные сосочка и их капиллярные петли. Если поверхность кожи освещать косыми лучами длинного света. В большинстве случаев видны лишь верхушки капиллярных петель, но на пальцах у основания ногтя сосочки видны и профиль, и капилляры можно наблюдать по всей их длине, поэтому—то основание ногтя является излюбленным местом для наблюдения и изучения капилляров. Со времен открытия Lombar d'а появилось довольно много работ, посвященных изучению как капилляров у нормального человека, так и при различных заболеваниях, в частности при инфекциях. Weiss, Gage, Karie и др. изучали нормальные капилляры. Krohng на основании этих работ приходит к выводу, что самым поразительным явлением при наблюдении капилляров основания ногтя является изменчивость капиллярных петель по величине и форме, почему он предостерегает от опрометчивых выводов в обобщении при наблюдении капилляров при различных заболеваниях.
Если даже отнесешь с должным вниманием к предупреждениям Крога относительно изменчивости формы нормальных капилляров, все же нельзя отрицать того, что исследования капилляров при различных заболеваниях имеют известное значение. Эти исследования показывают, что существует определенная закономерность в расположении капилляров, в форме их петель при том или другом заболевании, при том или другом состоянии периферического кровообращения. Например, исследования капилляров при скаратине, произведенные Боссе, Никау, Вейсс und Ханланд, указывают на то, что каждому периоду скаратины свойственна определенная капиллярскопическая картина. Так, если мы имеем мелко точечную сыпь на гиперемированном фоне (типичную картину скаратинной сыпи), то под микроскопом на резко гиперемированном поле зрения видны увеличенные в количестве, равномерно распределенные, расположенные ячейками капилляры сосочкового слоя. Ток крови отчетливо заметен. В таком случае, если на коже отмечается общая гиперемия, такого правильного расположения сосочковых капилляров уже не будет, капилляры теряют правильную форму, местами заметны местечечные аневризмы на цианотичном фоне. Ток крови замедлен. По исчезновению сыпи отмечается спазм капилляров или спастико-атоническое состояние. В периоде выздоровления капилляры равномерно расширяются.

Интересно отметить, что капилляры реагируют своеобразно на все осложнения. При развитии явления интоксикации, даже за несколько часов до проявления симптомов интоксикации, картина капилляров под микроскопом резко меняется: строение расположения нарушается, капилляры расширены, постоянно меняют свою форму; ток крови ускорен. Осложнения с повышением температуры сопровождаются атонией капилляров. Напротив, перед клиническими проявлениями нефрита, за несколько дней, еще до повышения кровяного давления появляется спазм капилляров. По исчезновении осложнений капилляры постепенно приходят к норме.

Капиллярскопия далее не только дает возможность наблюдать состояние капилляров при различных заболеваниях, но также отчасти — судить о функциональной способности и расстройствах функции периферических сосудов. Численное увеличение отдельных капиллярных петель, изменение их формы, в особенности их венозной части, расширенной и удлиненной против нормы, замедление тока крови служит признаком сосудистого застоя. При длительном застое начинают расширяться капилляры подсосочкового слоя; в случаях тяжелого застоя капилляры подсосочкового слоя резко расширены, пальцы с ухудшением пульса и аневризмами расширяются в венозной ветви. С усилением застоя фон становится все более и более пианотичным, ток крови замедляется, появляется тернистый ток, стазы и, временами, в венозной ветви и обратный ток крови. При застоях крови сердечно-сосудистого происхождения обычно не наблюдается потеря капилляров своего тонауса.

Влияние инфекции в большинстве случаев не ограничивается лишь воздействием на функциональную способность сосудов, оно вызывает также и патолого-анатомические поражения различных слоев кожной сосудистой стенки, начиная с ворот и кончая мелкими разветвлениями артерий.

Прежде, когда причину всех расстройств со стороны сердечно-сосудистой системы искать в состоянии сердечно, сосуды мало обращали на себя внимание. Все находимые в сосудах изменения, а это были, главным образом, аневризмы наиболее крупных сосудов, старались объяснить как вторичное явление, как результат поражения эндокарда. Исследователи более позднего времени, приблизительно с начала XX века, начинают обращать внимание уже на более мелкие сосуды до артериол и капилляров включительно. Особенно интересны в данном отношении работы Вейсс и Ру, который опубликовал ряд статей (один и совсемно с Лову), о гистологических изменениях сосудистой стенки как при остром заболевании — брюшной тиф, дифтерия, скарлатина, пневмония — так и при хронических. Он находил при всех этих заболеваниях чрезвычайно резкие изменения стенок артерий всех капилляров и особенно слева мелких, причем он подчеркивает, что никогда не бывает поражений сердца без одновременного поражения периферических артерий. Эти поражения характеризуются серьезным пропитыванием меди сосудов, дегенеративными изменениями в мышечных волокнах и ядрах, изменениями эластической ткани, потерей эластической тканью способности воспринимать окраску, нарушением правильного расположения, частичными разрывами, в некоторых случаях и мелко-клеточной инфильтрацией. Эти измене-
ния постоянно могут быть доказаны в медиа сосудов. intima же (в отличие от артериосклеротических изменений) бывает затронута лишь при очень далеко зашедших процессах. При тяжелых случаях интоксикации — media резко набухает, она пропитывается бесструктурной жидкостью, расположенной в виде капель между волокнами, иногда эти скопления обращаются в "целые обера с говяжьим содержимым". Местами можно видеть целые некротические очаги или на их месте развитие соединительной ткани с отношением известия. В этих случаях можно установить и явления регенерации мышечных волокон, но атипично расположенных.

Работами, произведенными приблизительно одновременно с Wies selем и последующими — Con dr a t e n, Wies ner, Lem ke, St ö r k и Epstein, Cys co e и др., данные Wies el в общем были подтверждены, однако не во всех деталях. Так Sch ar p f, Lem ke на основании своих исследований приходят к выводу, что хотя при инфекционных заболеваниях можно найти в артериях патологические процессы в смысле Wies el, однако нельзя привести к полному подтверждению относительно закономерности и значений этих явлений.

В ряду изменений артерий, которые можно видеть в связи с инфекционными заболеваниями, относятся, наконец, и те изменения, которые впервые обнаружил Fra en kel при исследовании симптоматической розы, а затем и изменения сосудов внутренних органов. Он установил, что в коже больных симптоматическими формами, а также во внутренних органах, как мозг, сердечная мышца и печень, можно доказать поражение внутренней оболочкой прокапиллярных артерий, артериальные и венозные тромбы, а также своевременные в виде узлов или мут токсичные воспалительные очаги наружной сосудистой стенки. Оказывается, что подтверждаются Ky rl e, B e c k e, B e n t e, B e u e, C e e le n. Fra en kel предлагает исследование вырезанных роз для диагностики симптоматического типа, т. к. присутствие изменений в сосудах соответствует выявлению положительной реакции Weil-Felix'a. Однако, за последнее время H a r t, S p i ro, Le m ke и др. обнаруживают специфичность этих изменений для симптоматического типа.

Как бы ни был механизм возникновения только что описанных изменений стенок периферических сосудов при инфекционных заболеваниях, несомненно одно, что все эти изменения могут оказывать значительное влияние на тонус сосудов, на периферическое кровообращение, а, следовательно, и на состояние кровообращения вообще. Тем более, что этим изменениям установлено, что в процессе появления их вначале наблюдается период возбуждения деятельности капилляров, а затем стадия паралича с неизмененным расширением просвета капилляров. O. M ü l l e r, наблюдая эти явления при гриппе, сепсисе, лихорадке и др. инфекциях, видит причину этого явления не только в функциональных изменениях, но и в чисто анатомических повреждениях отраливших стенок капилляров.

На тонус сосудов при инфекционных заболеваниях могут оказывать влияние не только токсины, но и др. вещества, циркулирующие в крови, и некоторые свойства самой протекающей по сосудам крови. Следовательно, в самой крови могут создаться известные условия, оказывающие то или иное влияние на сосудистую стенку. Свод должен быть отнесен продукты деятельности желез внутренней секреции, изменения целостности крови, концентрации водородных ионов, не- некоторые продукты распада белков особенно в большом количестве циркулирующие в крови именно при инфекционных заболеваниях и др. факторы в большинстве, быть может, еще не поддающемся нашему учету.

Из же волокнистой секреции на первом месте, по той роли которая приписывается им, стоят надпочечники. Продукт деятельности мозгового их слоя — адреналин при опытах на животных суживает сосуды периферические и расширяет коронарные и сосуды внутренних органов. Предполагается, что постоянное выделение адреналина в кровь тонизирует, помимо мышечных элементов сосудистой стенки, также и эндотелий сосудов, регулируя, таким образом, промежуточный тканевой обмен. G r a d in e с u на основании своих исследований думает, что смерть при удалении надпочечников происходит не от падения кровяного давления, хотя оно и понижается в таких случаях очень резко, но от повышения проходимости сосудистых стенок, повышения вязкости крови и невозможности в этих условиях обмена веществ между кровью и тканями. Очевидно, что поражения при инфекционных заболеваниях, доказанные в надпочечниках целым рядом авторов: R i c h a r d, O p p e n h e i m и L o o e r, P e y h t m a n, M o l c h a n o v, C i a c-
сю; Comby, Leon Tixier и Jean Troisiër, Gregor, Богомолец, Абрамов, Пурсев и многими другими, должно влиять на функцию надпочечников, а следовательно и на состояние кровообращения.

На втором месте из желез внутренней секреции стоит гипофиз, именно средняя его часть. Исследованиями Reborg'a и Krohg'a установлено, что удаление гипофиза вызывает нарушение и резкое расширение капилляров; напротив, введение гипофизарного экстракта вызывает резкий спазм артерий и в особенности капилляров. Изменения гипофиза при инфекционных заболеваниях еще мало изучены. Исследования его при сильном тифе по Давыдовскому обнаруживают некоторые изменения в железистой и нервной долях. В pars intermedia изменений не отмечено. То же самое мы находим в гистограмме Гамалея о бешенстве.

Хотя поражение желез внутренней секреции и могут оказывать влияние на тонус сосудов, однако не абсолютное, так как при удалении у животных одновременно и надпочечников, и гипофиза полного расширения тонуса не наблюдается (Nogaskis).

Теперь нам остается рассмотреть еще один момент, могущий оказывать влияние на тонус сосудистой стенки— это влияние на сосудистую стенку самой крови, влияние вещества циркулирующих в крови. Этот фактор, или вернее факторы, т. к. в данном случае играет роль не какое-нибудь одно вещество, не какое-нибудь одно условие, а сочетание различных условий, за последние время возбуждает заслуженный интерес и рассматривается с различных точек зрения.

Школа проф. Кра́кова обращает особенное внимание на группу веществ циркулирующих в крови и относящихся к протективным аминам (гистамину, триазину) и родственным им веществам: холину, холорину. Испытывая их действие на сосуды изолированных органов (сосуды уха кролика, жаберные сосуды, коронарные, сосуды легких, печени), целый ряд авторов из лабораторий проф. Кра́кова (Кра́ков, Писемский, Свечников, Садовская, Березин, Лихачева) доказали их сосудосуживающее действие. Это действие особенно отчетливо наблюдалось на сосудах изолированного уха кролика, слабее на коронарных и легочных и весьма непостоянно на сосудах печени. В этих опытах мы снова видим, что сосуды внутренних органов реагируют совершенно иначе, чем периферические сосуды, становясь иногда с последними в полный антагонизм.

Относительно действия протективных аминов на сосуды очень интересна работа английских авторов Dale и Laidlaw с гистамином. В своих опытах с впрямлявками гистамина телекровные авторы всегда видели падение кровяного давления и расширение периферических сосудов, и в то время как на сосуды изолированного организма гистамин оказывает сосудосуживающий эффект.

Сосудосуживающим эффектом обладает также выворотка крови, очевидно в процессе свертывания крови в сверток образуются сосудосуживающие вещества. Влияет на тонус сосудов и некоторые соли, циркулирующие в нормальной крови, напр.: соль кальция, а также не остается без влияния и концентрация воздуходонных понос. Повышение щелочности вызывает сужение, а усиление кислотности расширение сосудов; такая картина получается, если мы будем брать в отдельности различные составные части, различные вещества циркулирующие в крови. Влияние целой крови будет, конечно, гораздо сложнее, так как это влияние складывается из многих, частно еще совершенно не изученных, условий.

За последнее время начали появляться исследования, указывающие на влияние самой крови при острых лихорадочных заболеваниях на стенки сосудов. Так Лихачева указывает, что кровь при острых инфекциях действует сосудосуживающе, а в период критического падения t⁰ (при крупозной пневмонии) наблюдается явная наклонность к расширению.

Проведенная нами работа с целью выяснить, какое влияние оказывает на сосуды кровь септофазовых больных, дало несколько другие результаты. По нашим наблюдениям кровь септофазовых больных (целая дефибринированная и разведенная в жидкости Ringer'a) всегда оказывает сосудосуживающее действие на сосуды задних конечностей лягушки, будет ли она взята до или после приема пищи, во время лихорадочного периода болезни или вскоре после падения t⁰.

Опыты на телекровных животных дали те же результаты. После введения в вены кошкам кровь септофазового больного вслед за небольшим и очень непродолжительным подъемом кровяного давления, начинается то более быстрое, то очень медленное и постепенное понижение кровяного давления, которое затем по истечении 25—30 минут также медленно и постепенно возвращается к норме.
Очередные задачи врача на селе.

Д-ра А. Я. Плещеева.

Обострение классовой борьбы в деревне, сопротивление, оказываемое кулацким проведением мероприятий партии и совнаркома, методы насилия, применяемые кулацкое в отношении советских работников деревни, активистов, передовых крестьян ставят перед врачами, перед этим отрядом трудовой интеллигенции, работающей на селе, ряд крупных политических задач.

Основной вопрос — это, на какой стороне должен быть врач, должен ли он вступить в союз с бедняками и середняками деревни, с советскими и общественными организациями для того, чтобы нанести удар кулацкому и его прихвостнякам, или он может выбрать другой путь? Разрешение этого вопроса зависит от идейности врача, его политической установки: и то, и другое определяется многими факторами, из которых есть некоторые основные, определяющие его политическое и общественное лицо. Это будто — социальное происхождение врача и его отношение к совнаркому, к завоевателям Октябрьской революции. Точно познанное своеобразие задач, выдвинутых Октябрьской революцией, и мероприятий, проводимых в жизнь партией, профсоюзами и совнаркомом, дадут возможность каждому врачу быть в авангарде на передовых постах работе-крестьянского фронта строителей социализма на селе. Для этого необходимо четко усвоить политику партии на селе. 

XVI парт. конференция указывает, что создание крупного с.-хозяйственного производства, являющегося решающим методом преодоления отсталости сельскохозяйственного труда, может быть достигнуто или путем создания крупного кулацкого капиталистического хозяйства, или путем создания крупного социалистического хозяйства. Капиталистическому пути создания единоличного крупного хозяйства советская власть противопоставляет пролетарский метод создания крупного общественного хозяйства через производственное кооперирование, коллективизацию, дающую возможность мелкому и мелкохозяйственному хозяйству при содействии и под руководством советской власти укрепиться на началах коллективного труда и подняться на высший уровень техники и культуры. Крупное общественное хозяйство при этом не противопоставляется индивидуальным бедняцким и середняцким хозяйствам как враждебный им сила, а смыкается с ними как источник помощи им, как пример преимущества крупного хозяйства. Сохранив работу над решением коренной и важнейшей задачи — организации крупного социалистического земледелия — с повседневной широкой организационной, технической и экономической помощью рядовому индивидуальному бедняцкому и середняцкому хозяйству, с усиливающимся ограничением роста кулачества — партия стремится выполнить стоящую перед ней задачу — стать организатором и руководителем дела повышения производительности сельскохозяйственного труда. Соответственно всему этому,