Ж вопросу о влиянии эманации радио на просвет сосудов.

Экспериментальное исследование.

А. Н. Быховской.

(С 8 рис.)

Открытие радиоактивных элементов имело последствия, далеко выходящие из пределов данной специальной области—учения о радиоактивности. В медицине это открытие уже теперь сыграло выдающуюся роль и обещает еще большие перспективы в будущем. Поэтому выяснение биологического влияния препаратов радио представляет большой как практический, так и теоретический интерес. Такого рода исследования являются в настоящее время особенно своевременными.

Последние достижения физики, глубоко проникшей в сущность явлений радиоактивности,—с одной стороны и успехи био-физиологии, дающие возможность заглянуть в скрытные процессы живой протоплазмы,—с другой облегчают эту задачу. Радиоактивный атом, построенный из частиц гелия и электронов, обладает громадным количеством энергии; выделяя таковую постоянно в огромных количествах, он, естественно, становится раздражителем живого вещества. По современным взглядам элемент считается радиоактивным тогда, когда он обладает способностью спонтанно превращаться в другой элемент, химически от него отличаящийся. Атом радиоактивного вещества превращается при этом из самого себя (von sich selbst—терминология L. Meintner'a **), и его превращение сопровождается излучением. Так получаются те лучи, благодаря видимому действию которых и стало возможным открытие радиоактивности. В этих лучах выделены три главных группы, которые Rutherford'dom были обозначены как α-, β-, и γ-лучи. Здесь мы приведем краткую характеристику их, придерживаясь современных взглядов.

α-Лучи суть положительно зараженные атомы гелия, несущие двойной заряд, или, иными словами, ядра гелия. Они выбрасываются из ядра атома радиоактивной субстанции со скоростью до 20.000 килом. в секунду. Вылетевшая α-частица меняет заряд материнского ядра, и атомный вес. α-Лучи в состоянии проникать через слой воздуха всего в несколько сантиметров (6—7) и лишь очень тонкие слои плотных тел. У различных радиоактивных элементов они различаются своей скоростью, кото-

** Доклад на I Всесоюзном Съезде Физиотерапевтов в Ленинграде, в 1925 г.

** Lehrbuch der Strahlentherapie, Bd. I, 1925.

Каз. Мед. Журн. 1926 г., № 11.
рая, следовательно, характерна для того атома радиоактивного вещества, из которого α-частица происходит. При абсорбировании материальной средой α-частицы происходит длительное уменьшение ее скорости до тех пор, пока она не станет равной 0; тогда частица теряет уже характер α-луча, утрачивается при этом и заряд, и α-луч превращается в обыкновенный спокойный атом гелия, оставаясь в материи, которую он поглощается. Чем плотнее среда, тем меньше проникает она для α-луча.

β-Лучи — отрицательно заряженные электроны, вследствие их малых масс (1/1840 массы атома водорода) способны проникать гораздо большие слои, чем α-лучи. Скорость β-лучей в некоторых случаях почти достигает скорости света, т. е. 300 000 килом. в секунду. Характерным явлением для α- и β-лучей является их способность ионизировать газы, действовать на фотографическую пластинку и вызывать свечение различных субстанций.

Наконец, γ-лучи не суть материальные частицы, они не несут с собой и электрического заряда, — это электро-магнитные колебания. По существу они идентичны с рентгеновскими лучами и обладают очень сильной проникающей способностью, значительно превышающей таковую же наиболее жестких из рентгеновских лучей. Эта способность их зависит от чрезвычайно короткой длины волны; α- и β-лучи суть корпускулярные лучи, γ-же лучи суть, по своему существу, световые лучи, только более короткой волны.

Для радиоактивных проявлений важны особенно α- и β-лучи. Ибо радиоактивные превращения атомов покоятся на отщеплении именно α- и β-частиц, тогда как превращений, которые бы шли только через выделение γ-лучей, мы не знаем. Последние сопровождают β-лучи, реже а-лучи. При этом радиоактивный атом, который выделил α-частицу, становится уже совершенно новым атомом, химически совершенно отличным от прежнего: через излучение α-лучей плотный элемент, радий, распадается на газообразную эмиссию, что выражается уравнением:

Ra — α = EmRa

Эмиссия радия была открыта в 1900 году Д о г п ом. По своей природе эмиссия — газ, обладающий своим отдельным спектром и атомным весом в 222. Ее место в периодической системе элементов — в ряду благородных газов. Благодаря ее газообразной природе и радиоактивности, ее удалось исследовать и изучить отдельно от материнского субстрата. Трансформируясь, она испускает своим порядком α-лучи и распадается наполовину в 3,85 дня, а по самым последним данным — в 3,81 день (B o t h e). Как газ, она обладает всеми особенностями, свойственными газам. Как благородный газ, она характеризуется своей неспособностью вступать в химическую реакцию. Когда эмиссия удалена от материнской субстанции, ее активность убывает соответственно времени радиоактивного распада. Ровно через месяц между эмиссиями и производящим ее радием достигается равновесие, т. е., сколько ее разрушается, столько и вновь образуется из него. То количество эмиссии, которое находится в равновесии с одним граммом радия, принято за единицу измерения радиоактивности — 1 кюри. Выделяя α-частицы, эмиссия трансформируется постоянно в новые вещества, являющиеся продуктами ее распада. Все эти вещества об'единяют под общим именем активного осадка. Различают при этом быстро и медленно распадающийся активный осадок. К быстро-
распределяющемсяся принадлежат три первых продукта превращения эманации—это радий A, радий B и радий C. В то время, как радий A, B и C распадаются, они одновременно и образуются эманацией, так что через несколько часов (около 4) образуется равновесие эманаций и ее осадком.

Доказано, что α-, β- и γ-лучи радия C суть самые проникающие из всего урано-радиевого ряда. Большая скорость превращения продуктов радиоактивного осадка обусловливает то, что они никогда не могут скопиться в весомом количестве. Все действие радиоактивных лучей появляется, как это теперь выяснено, на процессе ионизации. Последняя сводится к тому, что, под влиянием взрыва радиоактивных атомов и выбросания положительно и отрицательно заряженных частиц, электрически-нейтральная молекула материи превращается в ионы, вследствие образования разницы в количестве положительных и отрицательных зарядов в ней. Ионизирующее действие производится α- и β-лучами непосредственно, а γ-лучами—посредственно, через возбуждение вторичных β-электронов.

Нами был поставлен ряд опытов по вопросу о влиянии эманации радио на просвет сосудов. Объектом служило изолированное ухо кролика (методика Н. П. Кравкова). О состоянии сосудистого просвета мы судили по количеству оттекающей жидкости в единицу времени, именно, в одну минуту. Изучение влияния эманации затруднялось тем, что последняя есть газ и, как всякий газ, летучая; поэтому, растворяя ее, необходимо было поставить эксперимент в такие условия, чтобы соблюсти постоянство концентрации раствора с одной стороны и постоянство давления, под которым жидкость втекает в приводящую артерию уха,— с другой. Для этого нами была использована система двух мармоттовских сосудов (см. рис. 1), снабженных ртутными вентилями (a, b), не дающими возможности газу из мармоттовской склянки уходить в атмосферу.

Оба мармоттовских сосуда наполняются Ringer-Locke'овской жидкостью до одинакового уровня (1900 кб. см.), причем в сосуде B растворяется желаемая порция эманации радио, содержащаяся в стеклянном
запаянном апилляре. Капилляр разбивается в верхней части стеклянной трубки \(D \) в совершенно глухом, не сообщающемся с атмосферой пространстве. Затем 5—6-кратным взбалтыванием сосуда освободившийся газ распределяется в жидкости. Жидкость остается в покойном состоянии 4 часа, для того, чтобы эманация пришла в равновесие со своими продуктами распада. Затем, проверив систему в отношении одинакового стояния уровней жидкостей в обеих бюретках, \(E' \) и \(F' \), приступаем к опыту.

Точно прослежив за движением насыщенной эманацией жидкости, начиная с мариоттовского сосуда и кончая канюлей, вставленной в приводящую артерию уха, отмечаем, что сообщения с окружающей атмосферой не имеется, и эманация не улетучивается в воздух; следовательно, в этом отношении соблюдается условие постоянства концентрации. Примем во внимание систему сообщающихся сосудов (мариоттовская склянка и бюретка), мы считаем необходимым устроить для поддержания одинакового давления ртутный вентиль. Последний устроен таким образом, что, по мере вытекания жидкости в ухо, т. е. уменьшения ее количества в сообщающихся сосудах, воздух имеет возможность попасть изве в мариоттовскую склянку взамен вытекшей жидкости, и таким образом сохраняется постоянство давления, под которым жидкость течет в ухо. Поступающий извне в мариоттовскую склянку воздух, конечно, разбавляет соответствующим образом содержание эманации, так что количество ее в начале и конце опыта разнится.

При любезном содействии сотрудников Гос. Радиевого Института мною было поставлено совершенно новое дополнительное исследование касательно коэффициента растворимости эманации радиа в \(R \) и ге-\(L \) о с к е о вской жидкости, так как литературных указаний на этот счет не имеется. Кроме того было поставлено несколько специальных электрометрических исследований с целью выяснить топоправку в концентрации эманации, которую надо вносить в каждый опыт в связи с особенностями постановки его. Опыты мы старались проводить в идентичных условиях температуры, времени и давления. Температура, в среднем, была 18°—19°С, продолжительность опыта—3 часа, давление вдыхаемого столба в бюретках—от 65 до 70 см.

Контрольные опыты без раствораения эманации дали нам,—правда, после повторных изменений установки,—совершенно идентичное истечение из одного и другого сосуда, так что, имея уже растворенную эманацию в R-L жидкости в сосуде B, мы разницу в числе капель пропускания жидкости из этого сосуда имели право всецело стнести за счет влияния растворенной эманации на сосудистый просвет.

Эманация Ra получалась нами постоянно из одного и того же места—Ленинградского Радиевого Института, запаянная, тщательно промеренная, обычно одним и тем же лицом. Исчисление производилось в единицах кюри, именно, в тысячных долях их (милликюри—MC). Максимальное количество, с которым мы работали, было 49,5 MC, минимальное—0,4.10—8MC (на литр жидкости). Окончательный подсчет дозы, с которой выполнялся каждый данный опыт, производился совместно со специалистами-радиологами, так что с математической стороны расчет можно считать свободными от ошибок.

Приводимые ниже на диаграммах дозы указаны те, которые имелись вначале каждого опыта. К концу его активность насыщенной эмана-
пией Р. - L. жидкости убывала, при средней продолжительности опыта в 3 часа, наполовину. На рис. 2 изображен этот процесс убывания активности Р. - L. жидкости в зависимости от изменения ее объема. График получен экспериментальным путем при помощи электрометрических измерений сотрудником Гос. Радиевого Института Р. А. Эйхельбергером. Коэффициент растворимости эманации Ra в Р. - L. жидкости равен 0,33, т. е. несколько больше, чем в воде, где он равен 0,25 при комнатной температуре. Таким образом фактически в Р. - L. жидкости эманации Ra при каждом данном опыте было больше в 1,32 раза, чем в таком же объеме воды.

Всего нами было поставлено 28 опытов с эманацией Ra.

Чувствительность сосудов изолированных органов, поставленных в условия искусственной жизни, доказана академиком Н. П. Кравковым и работами его школы. Экспериментальным путем в настоящее время точно установлен факт, что живая протоплазма является самым чувствительным реагентом, и поэтому она-то и есть наиболее совершенный объект для изучения биологического воздействия раздражителей как химической, так и физической природы. Изучение соединений реакции изолированных органов дает возможность глубоко проникнуть в механизм биологического действия этих раздражителей. Вся важность данной методики в деле уяснения воздействия всевозможных физических раздражителей подтверждена целой серий работ, вышедших из лаборатории Ленинградского Гос. Физиотерапевтического Института.

Принципа к нашим опытам с эманацией Ra, мы отлично представили себе всю сложность вопроса и в первой серии опытов пытались разрешить сравнительно-узкую задачу,—влияет ли вообще эманация Ra на сосуды изолированного уха кролика, т. е. на сосуды, лишенные связи с центральной нервной системой, и если влияет, то как?

Вопрос о действии эманации Ra на живую протоплазму вообще, как уже упомянуто, чрезвычайно сложен, а исследования в этом направлении трудны, благодаря природе самой эманации. Все же существует множество работ, посвященных этому вопросу (Лондон, Ньютон, Мезерницикий, Мас, Гудзент, Мендель и мн. др.). Что касается в частности влияния эманации Ra на сосудистую систему, то на этот вопрос 1) Б. М. Бродерзон и Л. М. Плотников. О влиянии излучения рт-кварцевых ламп на просвет сосудов. — Е. Т. Залькиндсон и Л. М. Плотников. О влиянии токов d'Арсонвалья на просвет сосудов. Врач. Дело, 1924, № 8—9.— Е. Т. Залькиндсон. О влиянии токов фарадийского, гальванического и синусоидального на просвет сосудов. Тр. VII Всер. Съезда Терапевтов.— Л. М. Плотников. О влиянии статического электричества на просвет сосудов. Врач. Дело, 1925, № 9.— А. К. Елинсон и Л. М. Плотников. О влиянии света лампочек накаливания на просвет сосудов. Докл. на I Всесоюзном Съезде Физиотерапевтов.— Р. И. Лившиц. О влиянии вибрации на просвет сосудов. Там же.
счет в литературе имеются лишь очень немногочисленные указания. Сюда относятся прежде всего систематические исследования Loe w y и Ples ch'a, находивших под влиянием эманации Ra быстро преходящее понижение кровяного давления. Далее, сюда можно отнести исследования Maa s'a над изолированным сердцем лягушки, показывающие, что диастола под действием эманации усиливается, число сердечных сокращений уменьшается на половину, при незначительной концентрации наблюдается

усиление сердечной работы. Выводы из этих работ таковы, что эманация Ra влияет как на сердце, так и на сосудистую систему,— на последнюю главным образом в смысле дилятации.

Обращаясь к нашим опытам, мы можем констатировать сосудорасширяющий эффект в 59,20% общего числа их. Расширение сосудов имело место при пропускании эманации в концентрации от тысячных и даже миллионных и миллиардных разведений одного МС до нескольких десятков этой единицы. На кривой опыта № 19 (рис. 3) виден резкий сосудорасширяющий эффект от чрезвычайно малого разведения, исчисляющегося в 0.38×10^{-3} МС на литр. Сосуды расширились при пропускании этого раствора. Трехкратное пропускание раствора с эманацией в этом опыте каждый раз вызывало расширение просвета, причем последнее иногда имело место после предварительной фазы сужения, как это видно из кривой опыта № 21 (рис. 4): здесь это предварительное сужение выступает

*) Пунктиром на всех рисунках отмечено пропускание эманированного раствора.
совершенно отчетливо, заменяясь при дальнейшем пропускании эманации расширением, составляющим в общем 26% первоначального просвета.

Имеется также ряд кривых с выраженным латентным периодом, длившимся от нескольких минут до 1—1½ часов, в зависимости от дозы эманации: обычно, чем последняя больше, тем меньше латентный период. Надо отметить все же, что никакого параллелизма между степенью концентрации и интенсивностью сосудистого эффекта нам отметить не удалось.

Кривая опыта № 28 (рис. 5) показывает расширение сосудистого просвета равное 35% первоначального при пропускании раствора, содержащего 34,4 MC на литр. Эта последняя концентрация бесконечно превышает предыдущие (опыты № 19 и № 21), сосудистый же эффект выражен слабее.

Расширение сосудов под влиянием эманации Ra силошь и рядом бывает стойким, как показали наши контрольные наблюдения над эманированным ухом спустя несколько часов после конца опыта.

В 27,2% все наших опытов мы получили противоположный эффект,—сужение сосудистого просвета, которое также во многих случаях представлялось стойким. Так, в опыте № 12 (рис. 6) доза в 0,83 MC привела сосудистый просвет в состояние стойкого сужения, равного 65,7% первоначального просвета, причем проверка через 1½ часа после пропускания эманации показала непреходящее сужение.
В тех случаях, где примененная концентрация эманации была меньше, токсический эффект на сосудах был менее выражен, и после прекращения действия агента сосудистый спазм постепенно проходил, причем просвет почти возвращался к своей первоначальной норме. В этом отношении характерна кривая опыта № 20 (рис. 7) с почти полным возвращением сосудов к их первоначальной норме— в то время, как в опыте № 13 сужение было стойким: очевидно, изменения сосудов при этой большей концентрации были настолько глубоки, что пропускаемая вслед за эманацией Рингер-Локеевская жидкость не могла уже, как во втором случае, приблизить сосуды к их первоначальному просвету.

Интересно отметить, что в некоторых опытах, а равно и в только что приведенном, сужение сосудистого просвета продолжалось и после выключения действующего агента, resp. эманации Ra. Факт этот допускает мысль о некоторой аналогии между действием эманации Ra и большинства ядов, которые, как доказано Н. Н. Кравковым, в период выхода действуют сильнее.

![Рис. 7.](image)

Наше вычисления показали, далее, что, проделывая опыт № 21, мы в одну минуту вводили в ухо 6.10^{-9} МС при первоначальной концентрации 1.5.10^{-7} МС на литр, т. е. мы имели в данном опыте миллиардные разведений. Эффект от влияния таких бесконечно слабых разведений на сосуды известен в литературе. Первый обратил на него внимание Н. П. Кравковым в целое "Учение о малых дозах". Некоторые металлы, как и алкалоиды, обладают подобным действием на живую протоплазму. По исследованиям Бредига коллоидная платина в разведениях 1,0 на 70 миллионов литров воды оказывает каталитическое действие на переокись водорода. Все ферменты, как это давно известно, олигодинамичны, т. к. действуют в ничтожнейших разведениях. По мнению Н. П. Кравкова, предел чувствительности сосудистой стенки простирается гораздо шире, чем 1 с 32 нулями: диастаз в разведении 10^{-32} не утрачивает, напр., своего специфического действия на крахмал. В наших опытах с эманацией Ra мы также имели ответную реакцию протоплазмы на ничтожнейшие разведения.

Обращаясь к физической природе эманации, именно, к тем процессам радиоактивного распада атомов, которые имеют в ней место и сопровождаются освобождением заключенных в ней электронов, мы и вправе ожидать от ничтожнейших количеств эманации ответной реакции.

*) Arch. f. exp. Path. u. Pharm., 1913, Bd. 71.
со стороны живой протоплазмы, т. к. элиминация электронов влечет за собой переход потенциальной энергии в кинетическую. В виду того, что это выбрасывание электронов происходит непрерывно, мы имеем при действии эманации Ra кинетическую энергию в каждый данный момент. Таким образом олигодинамическое действие эманации Ra находит себе обяснение в самой сущности радиоактивных явлений.

Олигодинамическое действие эманации Ra является чрезвычайно интересным фактом в том отношении, что экспериментально подтверждает мнение школы His'a, настаивавшей на малых дозах, в виду их несомненной клинической действительности, в противовес школе No o r d e n 'a, отстаивавшей большие дозы.

"Амплитуда", — если так можно выразиться, — влияния эманации Ra на прост ок сосудов чрезвычайно велика; ею вызывается с одной стороны громадное расширение сосудистого просвета — свыше, чем на 60\% первоначального, а с другой — стойкое сужение чуть-чуть не до спазма на 65,7\% по сравнению с первоначальным.

На основании полученных нами данных мы можем отметить крайнюю чувствительность живой протоплазмы к эманации Ra. Ответные реакции, — в большинстве опытов в виде расширения сосудистого просвета, в меньшинстве — в виде сужения, — как видно из приведенных выше кривых, выступают совершенно отчетливо. Наблюдавшаяся нами пестрая ответных реакций со стороны исследуемого объекта была известна и раньше, — об ней говорят, напр., в своей работе L a z a r u s и B a r t I o w *).

Обычно, как только растворенная эманация Ra попадает в ухо, тутчас же начинается биологическая ответная реакция, как это видно из приведенных выше кривых. Латентный же период, о котором уже упоминалось, зависит не только от дозировки, а и от того, успела ли эманация Ra прийти в состояние равновесия с продуктами ее распада. Это состояние имеет место спустя 4 часа после растворения, так что, начиная работу по истечении этих 4-х часов, мы как-бы вводим в ухо уже готовый радиоактивный осадок. Следует предполагать, что ток жидкости уносит с собою в ухо успевшие образоваться продукты распада эманации, которые и являются, как выяснено, биологически активными.

Выдающуюся роль в этом отношении играет ради C. Выше уже было упомянуто, что лучи радионя являются самыми проникающими из всего урано-радиевого ряда. Подвергая ухо действию только α-лучей (без β **), мы обычно также получали сосудорасширяющий эффект, причем последний, несмотря на сильнейшие концентрации эманации, — до 50 с лишним MC, оказывался нереактивным, даже слабым. Для примера сошлось на опыт № 22 (рис 8), где доза эманации равнялась 46,04 MC, сосудистый же эффект всего 9,4\% первоначального просвета.

Таким образом в этом опыте сильнейшая доза вызывала минимальный сосудистый эффект, в проявления которого играли роль только α-лучи. Этот факт, как и ряд аналогичных фактов, позволяет считать лучи α- и β радионя более активными, чем γ-лучи.

*) Strahlentherapie, 1913, Bd. III.

***) Путем облучения эманацией в запаянном капилляре.
На основании всех, полученных нами, данных мы вправе прийти к следующим выводам:
1) Эманация Ra является биологическим раздражителем для сосудов изолированного уха кролика.
2) Будучи применена в дозах от 0,4·10⁻⁶ МС до 34,39 МС, она вызывает большей частью (в 59,2% общего числа опытов) расширение сосудистого просвета, причем стойкому расширению может иногда предшествовать фаза кратковременного сужения; в 27,2% общего числа опытов при той же дозировке наблюдается стойкое сужение сосудистого просвета, а в 13,4% последний при действии эманации не изменяется.

Рис. 8.

3) Эманация Ra обладает олигодинамическим resp. парофармакологическим действием, вызывая сосудистый эффект в миллиардных разведениях (напр., 0,4·10⁻⁶ МС, т. е. 0,0008 МЕ, на литр), причем и такая концентрация не является, повидимому, еще окончательным пределом воздействия эманации Ra на протоплазму.
4) Главным действующим началом продуктов распада эманации Ra являются не γ-лучи, а α- и β-лучи.

Др А. Н. Бушовская (Ленинград). Sur l'influence de l'émanation de radium sur le diamètre des vaisseaux.

Л'ауте рь avait fait des experiments avec des injections intraveineuses d'émanation soluble de Ra dans une oreille isolée de lapin (méthode de K r a v k o v) et en conclut que l'émanation de Ra est un agent-excitateur biologique pour les vaisseaux de cette oreille isolée. Une dose de 0,4·10⁻⁶ MC—34,39 MC pour la plupart (59,2 p. c.) produit une dilatation vasculaire qui est quelquefois précédée par une vasoconstriction passagère. La même dose produit parfois une vasoconstriction durable (27,2 p. c.) ou n'agit point sur les vaisseaux (13,6 p. c.). Cette action de l'émanation de Ra est oligodynamique resp. parapharmacologique,—l'on reçoit un effet vasculaire pour une solution de un pour milliard. Le rôle actif principal appartient d'après l'auteur aux α et β-rayons (mais pas aux γ-rayons).