О применении основной питательной среды из творога для выращивания микробов.

О. В. Гельтциер.

Основным условием пригодности питательной среды для выращивания микробов является присутствие в ней белковых веществ. Исследовательская мысль до настоящего времени шла в направлении замены животного белка растительным. Это мы видим на большом числе германских рецептов, так наз. Ersatznährböden (суррогатных сред). С целью найти наиболее полноценную замену животных белков в бактериологических питательных средах, подробно определялся состав многих питательных веществ. Наиболее близкими по своему составу к животным белкам оказались белки сои. Так как соя распространена не во всех районах Советского Союза, русским исследователям пришлось искать других источников сырья, более доступных, чем соя. Научно-медицинским институтом были предложены питательные среды из гороха. Но, повидимому, эти среды оказываются не всегда пригодными (Кальк), хотя бы в виду ограниченности числа получаемых генераций к-р некоторых патогенных бактерий (бац. дизентерии Шига), отсутствия образования пигмента (чудесная палочка).

В поисках замены мяса для приготовления питательных сред мы пошли по несколько иному пути. Не пытаясь исследовать для этой цели какие-либо новые растительные вещества, мы решили использовать другие источники животного белка. Исходя из положения, что молоко является прекрасной питательной средой для роста или сохранения патогенных микробов, проф. Р. Р Гельтциер предложил использовать его для замены мяса в приготовлении питательных сред. Для этой цели мы остановились на одном из наиболее дешевых молочных продуктов—твороге.

Творог—это выпавший под действием кислоты или фермента казеин молока, перешедший в параказеин, т. е. почти вся белковая субстанция молока. То обстоятельство, что творог по количеству белка является совершенно равноценным мясу, видно из сравнения состава творога и мяса:

<table>
<thead>
<tr>
<th>Состав в %/0%: 1)</th>
<th>Азот. в.</th>
<th>Жир</th>
<th>Углев.</th>
<th>Золы</th>
<th>Воды</th>
</tr>
</thead>
<tbody>
<tr>
<td>Творог прессов.</td>
<td>24,8%</td>
<td>7,3%</td>
<td>3,5%</td>
<td>4%</td>
<td>60,4%</td>
</tr>
<tr>
<td>Творог тощий.</td>
<td>14,6%</td>
<td>0,6%</td>
<td>1,2%</td>
<td>0,2%</td>
<td>82,4%</td>
</tr>
<tr>
<td>Мясо</td>
<td>21,7%</td>
<td>2,5%</td>
<td>0,5% соли 1,1%</td>
<td>74,3%</td>
<td></td>
</tr>
</tbody>
</table>

1) Взято из монографии под ред. Леоновича—„Нормальный состав и пищевое значение продовольственных продуктов“. Москва, 1905 г.
С целью наиболее полного использования белковой части творога для питания бактерий мы приготовили из него бульон по типу Готтингера: 1 кг продажного рыночного творога опускался в 1,5 л кипящей воды и кипятился в течение 10 мин., затем творог пропускался через мясорубку, а жидкость охлаждалась до 50°. Измельченный творог и жидкость смешивались в большой бутылке с добавлением углекислой воды (или NaOH) реакция доводилась до ясно щелочной по лакмусу. Затем в бутыль прибавлялось 70 г поджелудочной железы (или 15 г панкреатина) и 20 куб. см хлороформа. Переваривание велось при температуре 40—45°С в течение 3—5 дней.

Измельченный творог превращается в порошкообразный осадок, а жидкость над ним приобретает желтый цвет. Конец переваривания определяется по положительной реакции на триптофан. По установлении положительной реакции на триптофан, все содержимое бутыли выливается в кастрюлю, прибавляется 2 л водопроводной воды и кипяится до полного удаления хлороформа; фильтрация. В случае выкипания—деливание водой до объема 3,5 л; разлива по флаконам, стерилизация при 120°—20 мин. Это основной раствор. Для приготовления бульона основной раствор разводился в 5 раз и прибавлялось 0,5% NaCl. Устанавливается требуемая реакция среды. Приготовленный т. о. бульон по виду ничем не отличается от обычного готтингеровского бульона (светложелтый, совершенно прозрачный).

С целью выяснения возможности заготовки творога, как материала для питательных сред, впрок или для работы в походных условиях, мы приготовили бульон из сухого творога: 250 г высушенного в термостате творога заливались 2,5 л водопроводной воды и оставлялись на холоду на ночь, затем кипячение в течение 10 мин., пропускание через мясорубку и далее все так же, как со свежим творогом в предыдущем рецепте.

На бульоне из творога были приготовлены: агар, агар с 1% глюкозы, бульон в пробирках, бульон с 1% глюкозы, среды Гисса, среда Эндо, кровяной агар, асцитический агар и бульон с кусочками печени.

На этих средах были испытаны следующие культуры: бацилла брюшин. тифа, паратифа А, В (Шотмиллера), паратифа В (Бресслау), кишечная палочка. бацилла Гертнера, бацилла дизентерии Шига и Флекснер, холерного вибриона, протей, b. prodigiosus, сарции, стафилококка золотистого, b. perfringens, oedematiens, histolyticus, v. septique, b. tetani, botulini, стрептококка гемолитического, бациллы сибирской язвы, дифтерии, гонококка и бледной спирохеты.

В отношении аэробных микробов перечисленных видов установлено: рост на косом агаре обычный, подвижность тоже, окраска по Граму—соответствующая. На индолообразование были испытаны на творожном бульоне протей и холерный вибрион. В бульонной 24-час. культуре протея реакция на индол положительна. В суточной культуре холерного вибриона реакция cholera-rot положительна. На среде Эндо, приготовленной на
нашем агаре, бациллы брюшного тифа, Гертнера и кишечная палочка дали типичный рост.

На средах Гисса, приготовленных на бульоне из творога, культуры кишечной палочки, протея, бац. брюшин. тифа, паратифа А и В через 24 часа дали соответствующие отношения к сахарам. На бульоне—обычный рост.

Агглютининность оказалась совершенно одинаковой с культурами на обычном Готтингеровском агаре. Реакция агглютинации была поставлена на этом агаре с к-рой бац. паратифа В в 5 генерации и с к-рой бац. бр. тифа и бац. Гертнера в 10 генерации.

Культуры всех перечисленных выше микробов получаются на средах из творога в беспрерывном ряде генераций. Из группы пигментных бактерий на этой среде выращивались нами b. prodigiosus, золотистый стафилококк, сарцина и дали обычное образование пигмента. Гемолитический стрептококк на творожном бульоне с глюкозой дает типичный рост; при пересеве на такой же агар с кровью—гемолиз. Бацилла дифтерии на бульоне из творога образует характерную пленку, на косом агаре хорошо растет. Даже такой требовательный к составу среды микроб, как гонококк, прекрасно растет на нашем агаре с асцитич. жидкостью. Бацилл сибирской язвы на агаре дает типичный рост. Лабораторные штаммы аназробов b. perfringens, histolyticus, tetanus, botulinus и v. septique дали обычный рост в первые сутки, b. oedematiens—на 1—2 сутки, в зависимости от количества посевного материала.

Согласно опытам проф. Р. Р. Гельцер с выращиванием бледной спирохеты на творожном бульоне с кусочками печени при разведении основного бульона в 3 и 5 раз, все штаммы (I и II Казань и штамм Reiter'a) дали пышный рост.

На токсинообразование была проверена только 7-дневная культура b. botulinus, которая дала положительный результат. Микроны на средах из творога так же жизнеспособны, как на средах из Готтингеровского бульона.

В отношении возможности роста микробов кишечно-тифозной группы на более чем в 5 раз разведенном бульоне из творога был сделан посев, при разведении основного раствора в 7—10 раз. Получился обычный рост. Нужно сказать, что до сих пор в бактериологической практике употребляется в качестве специальных питательных сред молоко и молочная сыворотка.

В 1925 г. Кристенсеном, Лестером и Юргенсом был предложен бульон из казеина, приготовленный по следующему рецепту: 3 кг казеина (датский препарат с содержанием азота 12,38%) смешиваются с 30 лит. воды. Добавлением нормального раствора NaOH реакция доводится до рН 8,5—9,0. Переваривается панкреатином; затем на каждый 1 кг казеина прибавляется 200 куб. см. концентрированной соляной кислоты, кипятят 5 мин., фильтруется, добавлением NaOH рН доводится до 7,0. Этот основной раствор смешивается с 2-мя частями воды и получается, так наз., индольный бульон, который рекомендуется для испытания на индолообразование. На бульоне из казеина авторы приготовили также агар Конаради-Дригалльского (1 часть основного раствора + 5 ч. воды для получения 2,5% агара).
В 1931 г. продукты переваривания творога были предложены Г. Котовым для замены нутронзы в среде Конради-Дригальского. Среда приготавлялась следующим образом: 1 ч. обычного продажного творога расpusкается в 3 ч. подогретой водопроводной воды. Остужается до 45°, помещается в бутыль, прибавляется сода до щелочной реакции, панкреатин из расчета 3—5 г на литр и хлороформ 15—20 г на литр. Переваривание в термостате при 37°—4—7 дней, при комнатной температуре—7—9 дней. Окончание переваривания узнается по просветлению и пожелтению жидкости. Жидкость фильтруется через бумажный фильтр, стерилизуется в автоклаве при 120°—20 мин. и прибавляется к среде Конради-Дригальского в количестве 15 куб см на 100 куб. см среды вместо нутронзы.

Дальнейшей нашей задачей является испытание сред на творожном бульоне для изучения антителенных и иммуногенных свойств микробов, применяемых для приготовления вакцин; затем испытание сред при посеве материала непосредственно от больного человека и изучение токсикообразования. Эти опыты будут предметом следующего нашего сообщения.

Выводы: 1) Творог в бактериологической практике для приготовления питательных сред, повидимому, может с успехом заменить мясо.

2) Бульон, приготовленный из творога, при разведении основного раствора в 5 раз, приблизительно в 9—10 раз дешевле Готтингеровского. Это обстоятельство, в случае пригодности творожного бульона для производства вакцин, даст большую экономию средств.

3) Творог, как сырье для приготовления питательных сред, является легко доступным во всяких условиях работы (экспедиционных, военных и т. п.), благодаря своему широкому распространению и возможности заготовления его впрок в любых количествах и на долгое время путем высушивания—самого легкого и дешевого способа консервирования.