Влияние носового и трахеального дыхания на содержание кислорода в артериальной крови.

Д-ра А. А. Шаховой.

(С рис.).

Исходя из того, что при сильных затруднениях носового дыхания, человек принужден пользоваться дыханием через рот, важно знать, как отражается это на различных функциях организма. Необходимость проверки этого диктовалась еще и тем, что затруднения дыхания через нос вызывают различного рода сдвиги, занимающие частью от незначительного высыхания слизистой рта, глотки и трахеи, частью же от отсутствия фильтрации воздуха и свободного занесения инфекции; но, кроме этого, в литературе имеются указания, что затруднение дыхания через нос могут привести к глубоким расстройствам в организме, расширяющимися даже на процессе развития растущих индивидов (Ziem). В работе д-ра Гамаюнова имеется указание, что переходжение кровеносных сосудов мозга может сопровождаться непостоянной кожной кровью. Улучшение описательных процессов в организм можно объяснить бурным рост ребенка и общее благотворное влияние на него при восстановлении носового дыхания посредством аденоэнтом. Но как при затруднении носового дыхания, как уже сказано, часто пользуются ротовым, то участие в этих расстройствах именно ротового дыхания оказалось невыясненным. А между тем известно, что в случаях, когда в силу тех или иных причин ротовое дыхание становится привычным, наблюдаются изменения в организме: у растущих индивидов изменение строения зева с высоким и узким сводом, расстройства пищеварения, изменения строения грудной клетки и т. д. (Amersbach, Körner). Таким образом, явился само собой показанием для опытной проверки влияния ротового дыхания на организм в сравнении с действием носового. Но, так как опыты на животных с частым ротовым дыханием плохо успевают в таком виде, чтобы получить беспрепятственные и бесспорные данные, приходится ставить эксперименты с дыханием через трахею, которое можно считать в известной степени аналогичным дыханию через рот. Опыты Павловского и Лопатиной с влиянием носового и трахеального дыхания на вентиляцию легких показали, что при трахеальном дыхании вентиляция оказывается повышенной на 30% в сравнении с вентиляцией при дыхании через нос. А отсюда уже ясно возникает вопрос о степени артериализации крови в легких сравнительно при том и другом дыхании: при этом вполне естественно было предположение, что артериализация крови при артериальном дыхании должна быть несколько ниже, чем при носовом. Для подтверждения этого предположения нам и была предпринята экспериментальная работа на животных (собаках) при носовом и трахеальном дыхании. Проф. Верховский в своей статье „Значение болезней носа, горла и ушей“ подробно останавливается на проблеме...
носового дыхания и отмечает, что при носовом дыхании происходит лучшая газация крови; он оперирует на результаты исследований Иванова, работы которого, к сожалению, нам достать не удалось; повидимому, она не была напечатана. Для изучения газового обмена крови при различных типах дыхания мы ставили опыты с кровью собаки, определя в ней, количество кислорода с помощью аппарата Winterstein'a. Аппарат (см. рис.) состоит из двух гуменищих, плотно закрывающихся, сосудов, которые сообщаются между собой капилляром с наполненными на нем делянками. В середине капилляра находится капля керосина; при попытках дыхания в одном из сосудов она поднимается в сторону другого, когда не транспортируется дыхание. Но так как движущийся в сторону другого сосуда капилляр сжимают сжигающими в нём делянками, то Winterstein, для избежания влияния калабарм дыхания и желез, получать абсолютные данные, соединяет капилляр еще с ртуным манометром. На последнем имеется приспособление (небольшое резиновая трубка с зажимом), позволяющее произвольно поднимать или опускать ртуть в компенсационном капилляре. Таким образом, опуская ртуть, можно как вперед, так и в обратную сторону, и прочитать манометром, на сколько куб. миллиметров ртуть опущена, т. е., сколько куб. миллиметров газа вливается в изменяющийся сосуд. Исследование ведется так: в сосуд выносят раствор аммиака (4 куб. см. 1 д. в. 8,5 на один литр). В сосуд прилегающий к манометру, под раствор аммиака осторожно подводятся крови, а в сосуд, прилегающий к манометру, которая приливаются к проколотой пробке и которая опускается внутрь сосуда, вносится насыщенный водяной раствор калиевой сody. Легкие наполнением аппарата керосиновая капля при сообщении кровей с внешним воздухом ставятся на желаемое место. Аппарат опускается в ванну. Затем крышка ставится на соединение с капилляром, манометром и сосудом. После выключения влияния давления и температуры, через некоторое время, капелюк капли возвращаются на начальное место. На ртутном манометре также произошелся точное отсчетывание, которое и записываются. Кроме этого, фиксируется ванные. Крылья запираются, кровь смешиваются с аммиаком до образования лаповой, а затем вливаемся в манометр ртутью. Аппарат опускается в течение 5 минут и затем сливается в ванну. Сначала опускается ртуть на предполагаемую обем выделимого газа, и в первую очередь заливается капля, прилегающая к манометру, а затем уже крышка компенсационного сосуда. При открытии обоих красных может произойти через переломного давления разрыв керосиновой капли, потому при этом требуется осторожность. Изменение положения капли в течение 3–5 минут производится отсчетывание на манометре. Раничи до и после опыта указывает на количество освобожденного кислорода.

Опыты с собаками производились следующим образом: собака, для исключения неучитываемых влияний со стороны возбуждений животного при операции, наркотизировалась 2% раствором эфиря с atropinum sulf. (1,005) на 100 к. с. в количестве 5–10 куб. см. по приблизительно-
ному всем собакам). После наступления глубокого сна производилась трахеотомия, и в трахею вводилась T-образная резиновая трубка; рана на шее закрывалась пассовью. На морду надевался резиновый баллон с отводной резиновой трубкой. Баллон плотно прибинтовывался эластическим бинтом. Накладывая зажим поочередно то на резиновую трубку баллона, то на перпендикуляр T-образной трубки, вставленной в трахею, мы получали то носовое, то трахеальное дыхание. Дыхание при том или ином типе продолжалось не менее 15 минут. Того же после трахеотомии открывались бедренные артерии, из которых и брали кровь. Для предотвращения свертывания шприц смачивали 2% раствором натрия охали. Кровь брали в количестве 5 куб. см. и подводили под жидким парафином нейтральной реакции, чтобы иметь возможность поставить ряд контрольных опытов или на случай неудачного опыта, так как техника очень трудна и напряжена, а кровь под парафином сохраняется в течение многих часов без значительных изменений. Полученные результаты приводим в следующей таблице:

<table>
<thead>
<tr>
<th>№ опыта</th>
<th>Носовое дыхание</th>
<th>Трахеальное дыхание</th>
<th>Разница</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>11,8</td>
<td>7,4</td>
<td>4,4</td>
</tr>
<tr>
<td>2</td>
<td>9,4</td>
<td>9,0</td>
<td>0,4</td>
</tr>
<tr>
<td>3</td>
<td>12,1</td>
<td>9,7</td>
<td>2,4</td>
</tr>
<tr>
<td>4</td>
<td>11,6</td>
<td>8,1</td>
<td>3,5</td>
</tr>
<tr>
<td>5</td>
<td>11,3</td>
<td>7,8</td>
<td>3,5</td>
</tr>
<tr>
<td>6</td>
<td>16,4</td>
<td>11,4</td>
<td>5,0</td>
</tr>
<tr>
<td>7</td>
<td>16,6</td>
<td>15,6</td>
<td>1,0</td>
</tr>
<tr>
<td>8</td>
<td>9,5</td>
<td>17,1</td>
<td>7,6</td>
</tr>
<tr>
<td>9</td>
<td>13,9</td>
<td>9,9</td>
<td>4,0</td>
</tr>
<tr>
<td>10</td>
<td>14,0</td>
<td>10,4</td>
<td>3,6</td>
</tr>
<tr>
<td>11</td>
<td>16,5</td>
<td>9,9</td>
<td>6,6</td>
</tr>
<tr>
<td></td>
<td>17,0</td>
<td>9,0</td>
<td>8,0</td>
</tr>
<tr>
<td></td>
<td>9,9</td>
<td>8,5</td>
<td>1,4</td>
</tr>
</tbody>
</table>

Из таблицы видно, что содержание O2 в артериальной крови при дыхании через нос всегда выше, чем при дыхании через трахеотомус. Однако, постоянности в цифрах мы не заметили, хотя и в большинстве случаев мы здесь имели уменьшение артериального давления крови при дыхании через трахеотомус на 30—55%. Это непостоянство приходится, повидимому, объяснить различной степенью наркоза и индивидуальностью; это особенно резко ведется в опыте № 10, где наркоз был не глубок. Кроме этого причиной были и технические недостатки, как напр., в опыте № 2, где собака дышала через трахео-тубус всего лишь 3 минуты, или в опыте № 7, где некоторое время по недосмотру было смешанное дыхание через нос и через трахею. Причины повышения содержания O2 при дыхании через трахею в опыте № 8 остались для нас неясными.

Из Факультетской хирургической клиники Казанского госуниверситета
(Директор проф. А. В. Вишневский).

О послеоперационном ацидозе при местной инфильтрационной анестезии.

В. И. Пешеничников и П. С. Крестников.

В последние время появилось много работ, посвященных послеоперационному нарушению щелочно-кислотного равновесия организма, обозначаемого ацидозом. Это состояние авторы ставят в зависимость от ряда причин и между прочим от способа обезболивания. Виду того, что в нашей клинике почти 98% операций проводится по методу проф. А. В. Вишневского, покоящегося на применении послойной инфильтрационной анестезии с систематическим использованием ацетоноводородной обработкой тунд, послойных, зонных инфилтратов, причем иногда на расстоянии около миллиметров от раны и около 1/4% новокаина в Рингеровском растворе + 20 кап. соли (adrenalini hydrochlorici 1:1000 в литр раствора), и так как при обычном клиническом наблюдении нам не удалось отметить никаких осложнений ни в периоде раневого процесса, ни в послеоперационном периоде, то мы считаем возможным применить метод для более общей и объективной оценки послеоперационного состояния наиболее типичных наших больных.

Поскольку в учении о послеоперационном ацидозе затрагивается вопрос о влиянии наркоза или местного обезболивания мы позволим себе привести результаты наших исследований.

Щелочной резерв крови. Мы использовали методом Рофовы.

По этому автору карбонатное число плазмы крови является показателем щелочного запаса у здоровых н. в. и среднее значение равно 1,42, колеблется между 1,25—1,62. Это число очень стойке, по нему можно представить картину ацидоза. Если карбонатное число меньше 1,25, то можно говорить о нарушении обмена в сторону ацидоза. К этому же выводу пришел Яковлев. Исследование произведено у 51 н. в. (30 мужчин, 21 женщин: возраст: до 30 лет—15 н., от 30 до 40 лет 31 н., и свыше 50 лет 5 н.). По национальности: русских 37, татар 11, евреев 2, турок 1. Кровь бралась накануне, в день операции и в другой день после операции утром. По роду операций 6-ме распределялись: полостные операции 33, на почках, мочев. пузыре и предст. железе 6, ампутации груди, железы по поводу рака 3, операции на головном и спинном мозгу 3, на яичке 3, геморрое 4, кисте шеи 1.

До операции минимально карбонатное число равнялось 0,46.

" максимальное " 1,68.

После минимально " 1,02;

" максимальное " 1,78.

Колебания после операции в сторону повышения были от 0,005 до 0,23 и в сторону понижения от 0,005 до 0,35. До операции карбонатное число было ниже нормы у 9 н., у 2-х из них после операции оно достигло нормы.