Гигантоклеточковая саркома бедра, развившаяся из влагалища musc. sartorii *).

И. С. Рождественского.

В настоящее время заслуживает Общества врачей имъю честь сообщить о случае гигантоклеточной саркомы мягких частей бедра. Опухоли, развивающиеся въ мягких частях бедра большей частью локализуются въ верхней 1/3 его, особенно въ паховой области, въ противоположность опухолямъ, исходящимъ изъ восточной системы, которая предпочтительно развиваются на нижнемъ конце бедра.

Кромъ доброкачественныхъ опухолей кожи и подкожной клетчатки (фибромы, липомы, гемангиомы) здѣсь встрѣчаются злокачественные опухоли—раки и саркомы, причемъ послѣднія развиваются большой частью изъ пигментныхъ пятенъ. Но ни на одной другой части тѣла не встрѣчаются такъ часто, какъ на бедрѣ, мышечные саркомы (Handbuch d. prakt. Chirurgie v. Bergmann, Bruns u. Mikulicz, Bd. IV, 1901). То обстоятельство, что эти саркомы рано проникаютъ черезъ fascia lata, дало имъ название „саркомъ широкой фасцией бедра“. Въ дѣйствительности же исходнымъ пунктомъ ихъ развитія является интерстициальная соединительная ткань мышцъ бедра, главнымъ образомъ mm. adductorum и иногда mm. vasti interni и externi. Въ нашемъ случаѣ исходнымъ пунктомъ развитія опухоли была влагалище m. sartorii.

Переходимъ къ описанію этого случая.

Больной Пётръ Г.—овъ, 60 лѣтъ, куриеръ, поступилъ въ Александровскую г. Казаны больницу 6/II. 1908 г. (№ 30 приемного журнала). Онъ замѣтилъ 6 мѣсяцевъ тому назадъ опухоль въ области верхней 1/3 праваго бедра, величиной съ уретное яйцо; затѣмъ опухоль стала быстро увеличиваться.

При поступлении въ больницу имѣлось на передне-внутренней поверхности верхней 1/3 праваго бедра опухоль, величиной съ

*) Должено въ заслужении Общества врачей 15-го мая 1908 г., съ демонстраціей макро-и микроскопическихъ препаратовъ.
дётскую головку; продольный диаметр ея—21 сант., короткий—19 сант. Опухоль плотногватой консистенции, на широком осно- вании, подвижная, но подвижность уменьшается при прижимании ноги и сгибании голени. Покровы над опухолью нормальные. Около верхнего полюса опухоли, большие внутри, имется под кожей от- дельный узел, величинюю около греческого орхха. Паховая железы не увеличены. На задней поверхности праваго бедра и ягодиц—небольшая отечность покрововъ. Окружность праваго бедра ниже опухоли—50 сант., лъваго на соответствующемъ мѣстѣ—48 с.; окружность правой голени въ срединѣ длины—21 с., лѣ- вой—19 с., Art. femoralis и art. poplitea dextr. ясно пульси- руютъ. Общее состояние больного удовлетворительное.


На другой день послѣ операции больной жиловался на боли въ ранѣ; самочувствие хорошее. Черезъ 8 дней послѣ операции рана зажила per primam, но на правой ногѣ развилась явленія тромбофлегмата съ небольшой отечностью покрововъ. 7/III. 1908 г. больной выписался изъ больницы съ отечной ногой.

Върѣбная опухоль (здѣсь предьявляется только половина ея, консервированная по способу Kaiserling'a) представляеть въ общемъ мягкую, легко разрывующуюся массу, съ очагами раз- мятченія (некроза) и многочисленными геморрагіями, мѣстами-же, особенно въ периферіи, имется больце жесткую консистенцию и на поверхности разрѣзаеы пальцы опушаются разсѣянные очень мелкие участки какъ бы костной плотности.

Изъ различныхъ отдѣловъ опухоли были взяты кусочки для микроскопическаго изслѣдованія и фиксированы въ 10/о водномъ растворѣ формалина (по Stöhr'у), въ 10/о Müller-Formol'ь (по Ort h'у), масса же опухоли сохранена по Kaiserling'у. Декаль- цинаціи кусочковъ не производилось. Заключеніе въ цѣлое должно и парадинь. Для окраски срѣзъ употреблялся Hämalaun R. M a y e r'a и эозинъ, Alau-Cochenil C s c o r'a одинъ или съ пи- криновой кислотой и способъ v. Geson'a. Очень дистинктив- ное окрашиваніе получалось при способѣ v. Geson'a.

При микроскопическомъ изслѣдованіи опухоль оказалась гигантоклѣточковой саркомой. Въ болѣе маккыхъ частахъ
опухоли преобладающая масса клеточных элементов состояла из крупных круглых или полиморфных клеток, среди которых распreadingь в большом количестве гигантские клетки; мешками имются очаги аменического некроза и гаморрагии.

В более жеистых отделах опухоли гигантских клеток меньше и вместо больших круглых или полиморфных клеток, которые здесь встречаются лишь очагами, имются не особенно крупных веретенообразных клеток; мешками же гигантских клеток не встречается, но имется только мелковеретенообразные клетки с продольными, стромой, тут оказывается не мало рассеяно мелких, узких, балок, нефрифицированной ткани, попавших в срезы то в продольном, то в поперечном сечении и не анатомизирующих между собой. У краев этих балок пять разительного ряда остеобластов и не заметно особенного скопления клеток, но в самых балках иногда включены клетки неправильной формы, сходные с клетками более молодой kostной ткани (sarcoma ossificans).

В частях опухоли, захвативших мышечную ткань, среди саркоматозных клеток имются разсевающие остатки мышечных волокон в продольном и поперечном развитии; многие волокна хорошо сохранили продольную и поперечную нечерченность, нередко атрофированные, иногда нежно-зернистые или представляются на концах как бы обломанными. Саркоматозная клетка (большения круглых и веретенообразных) непосредственно подступает к мышечному волокну. Больше наружу мышечная ткань состоит из узких мышечных волокон, разреженных пучками интерстициальной соединительной ткани, инфильтрированной мелкими клетками.

Относительно других деталей микроскопической картины можно отметить общий кариоинетических фигур дёления клеток опухоли, указывающий на особенную энергию роста опухоли. Имются как правильные митозы, так и неправильные, с распавшимися или отделившимися от общей ядерной массы хромозомами и так называемые „Riesenmitose“, т. е. крайне большие, неправильные гиперхроматических фигур дёления, состоящая из множества отделяющихся частиц хроматина. Затем встречаются клетки, представляющие распал ядер различных стадий как митотического, так и амитотического дёления. Имются также крупные клетки с ядрами необычайного объема и неправильной, лапчатой формы, так называемыми „Riesenkerne“, сильно охрашающимися (густая сеть хроматина), которая также относится к явлениям регрессивного метаморфоза. Иногда попадаются клетки с 2—4 сильно охрашающимися, большими гиперхроматическими ядрами.
Имеются гигантские клетки — различной величины, иногда очень значительной, с нёжноозернистой протоплазмой и иногда очень большим числом ядер (до 100) овальной или круглой формы, равномерной величины, не связанных между собой и равномерно разсаженных в протоплазму, за исключением периферии клетки, где остается узкая безядерная цайма протоплазмы (тип остеоblastов). Форма гигантских клеток круглая или неправильная с короткими отростками, колбовидная и т. д. В нёкоторых клетках можно видеть вакуоли и клеточная включение (лимфоциты).

Под микроскопом демонстрируются следующие препараты:
1. Нормальные и патологические митозы в клетках саркомы, „Riesenmitose“.
2. Мишечная волокна среди клеток саркомы.
3. Гигантские клетки в большом числе на ограниченном пространстве; громадная гигантская клетка с многочисленными ядрами, с вакуолами и двумя клеточными включениями.
4. Sarcoma petrificans и ossificans.

Саркомы развиваются из соединительной ткани нашего тела, составляющей строму (Stützgewebe) всех органов и из соединительно-тканного дериватов — периходрия, перистома и костного мозга. Состоя из одного рода ткани, они причисляются к гистоидным опухолям (Virchow), с нёкоторым впрочем ограничением, ибо нёкоторые саркомы имуют „органоидный“ характер. К органоидным опухолям вообще относится такая, которые напоминают строение функционирующих органов (соединительно-тканная стroma и паренхима). Таковые, наприм., раковые опухоли, образовавшиеся из разросшихся клеток эпителия; так как клетки вообще не могут образовать большие значительных скоплений без проникания в них среду питающих кровеносных сосудов, ибо именно он погибают, то эти эпителиальные массы обыкновенно пронизаны большие или меньше сильно развитой, содержащей сосуды, стромой, так что получается паренхима опухоли — скопление эпителия и стroma. Также саркомы приобретают органоидную структуру при развитии в них большие или меньше значительного количества кровеносных сосудов, причем большие крупные сосуды сопровождаются известным количеством разросшейся соединительной ткани.
Вообще характерно для саркомы огромное преобладание клеточных элементов над основным веществом, так как саркоматозная ткань представляет собой тип молодой, нервной соединительной ткани, которая продолжает стационарно пребывать в этой молодой стадии. В общем сарcoma даже богаче клетками, чьи эмбриональная соединительная ткань или разраставшаяся соединительная ткань при воспалении и регенерации, с которой она имбет еще большое сходство. Соответственно богатству клеток эти опухоли отличаются быстрым ростом. В саркоме вся клеточная фаза развития соединительной ткани может развиваться и фиксироваться, так что получается разновидности саркомы в зависимости от большего или меньшего дифференцирования составляющих клеток.

В отличие от эпителиальных опухолей (рака) саркоматозная ткань характеризуется присутствием большого или меньшего количества межклеточного вещества, которое, смотря по происхождению опухоли (изъ обыкновенной соединительной ткани, хрящевой или костной), может быть разнообразно. Часто оно имбет в очень скучном количестве и с труда констатируется, но обнаружение его важно для диагностики саркоматозного характера опухоли. Оно может быть то однообразно бъяя, то волокнистое, то с примѣсью связи. Кромѣ волокон в основном веществе могут быть и другие, выше дифференцированные дериваты коллагеновой натуры: гиалиновый хрящ, остеоидное вещество, костная ткань. Таким образом опухоли получаются комбинационные формы саркомы (chondro-sarcoma, sarcoma osteoides, osteo-sarcoma), в которых одновременно съ разрастаниемъ эмбриональной (саркоматозной) соединительной ткани идет ростъ и этихъ тканей.

По одной только формѣ клѣтокъ обыкновенно невозможно точно установить, происходятъ ли данное новообразование отъ клѣтокъ соединительной ткани или изъ эпителия, но какъ въ томъ, такъ и въ другомъ случаѣ форма клѣтокъ можетъ быть самой разнообразной и меняться отъ взаимного сосприкосновенія клѣтокъ и отъ метабластическихъ процессовъ. Поэтому форма клѣтокъ не имбет ничего характернаго для той или другой опухоли и нѣтъ принципиальной разницы между отдѣльной клѣткой карциномы и клѣткой саркомы. Понятие „эпителий“ обозначаетъ не известную клѣточную форму, но только непосредственное прилегание клѣтокъ другъ къ другу въ видѣ непрерывнаго клѣточнаго комплекса безъ промежуточнаго вещества. Точно также и выраженіе „эпителиоидная“ клѣтка (Vichow) для клѣтокъ туберкула обозначаетъ не определенную клѣточную форму, но болѣе вѣшнее „эпителио подобное“ покрытіе этой гранулемы посредствомъ болѣе крупныхъ, богатыхъ про-топилазмой клѣтокъ.
Только гистогенез позволяет сделать распознавание, так как специфичность клеток, сообразно закону "omnis cellula e cellula ejusdem generis" (B a r d), всегда сохраняется, так что от эпителия всегда происходят только эпителиальные опухоли и от соединительной ткани — соединительно-тканная. Этот гистогенез может быть определен не по форме клеток, а только по взаимному отношению их в больших комплексах. Именно соединительно-тканное происхождение характеризуется существованием межклеточного вещества, стоящего в прямой связи с клетками и представляющего продукт деятельности клеток. Поэтому изслѣдования на изолированных тканевых клетках только с крайней осторожностью могут служить для определения характера опухоли.

Не только эпителий и клетки соединительной ткани, но и всѣ другие клетки организма способны служить материнской почвой для образования опухолей. При этом образовании взвиливо, безъ ясной причины, наступаетъ самостоятельный ростъ извѣстнаго клеточнаго комплекса, причемъ клетки утрачиваютъ свои специфическія, особенно функциональныя свойства, и нѣкоторымъ образомъ спускаются на низшую, болѣе раннюю ступень дифференцированія (Entdifferenzierung), претерпѣваемъ такъ называемую (v. H a n s e m a n n) аналапцію. Въ тоже время они дѣляются способными къ большему или меньшему обособленію отъ своей тканевой matrix, проявляющемуся черезъ измѣненіе формы и характера пролиферации, и по отношеню къ материнской почвѣ становятся уже излишними или даже прямо враждебными, т. е. действующими разрушительно, образованиемъ.

Въ простыхъ случаяхъ клетки опухоли сохраняютъ видъ и распределение клетокъ материнской почвы (фиброзы, карциномы и т. д.). Такія опухоли называются гомологическими. Напротивъ, въ другихъ опухоляхъ клетки могутъ обнаруживать очень значительныя морфологическія уклоненія отъ клетокъ материнской почвы, такъ что по конфигураціи и по распределенію ихъ въ опухоли нельзя сдѣлать заключенія о matrix, изъ которой они произошли, такъ напр. цилиндрическая клетки эпителия могутъ превращаться въ кубическія или полигональныя или даже въ плоскія, какъ въ нѣкоторыхъ ракахъ матки. Такія опухоли, въ строеніи которыхъ нельзя принять аналогію съ материнской почвой, называются гетерологическими. Саркомы принадлежать къ послѣднимъ.

Соотвѣтственно болѣе или меньше быстрому росту опухолей, въ нихъ встрѣчаются въ большемъ или меньшемъ числѣ фигуры каріокинетическаго дѣленія клетокъ. При такомъ же быстромъ ростѣ, какой обыкновенно представляютъ саркомы, въ ростѣ
Развивающихся митозов идут различные аномалии процесса деления ядер и клеток. Эти неправильности касаются как хроматиновой, так и ахроматиновой ядерной субстанции. Так как видь встречаются кромки обыкновенных биполярных митозов еще митозы с 3 и более, иногда множественный центров притяжения (Attractions-sphären) или центрозом (мультитопиальная фигура деления), соответственно чему с отложением хроматина образуется не два, но много ядер. Неправильности и уклонения от нормы чаще наблюдаются в хроматиновом веществе ядер. Именно, повлияющаяся из стадии клубка (spirema) хроматиновая нить, состояния в свою очередь из ряда шариков или кружков (хромозомы), превосходя норму в числе и величине (гиперхроматоз ядер) или ниже ее (гипохроматоз). Среди гиперхроматических фигур деления часто встречаются так называемые „Riesenmitose“, т. е. клетки, в которых хроматин ядра разделялся на множество отдельных частей, петель, шариков и капелек, группирующихся около 2 или больше центrozом, причем вся хроматиновая масса нередко принимает вид неправильной, крайне большой розетки. Редко и почти только в карциномах наблюдаются асимметрические митозы, при которых общий дочерним звездам принадлежит различное количество хромозом, так что одна половина может во много раз превышать другую. Встречаются также гиперхроматические митозы, в которых весь хроматин собрался в вид к комка (Verkluimping des Chromatins), или митозы с хромозамами, отшедшими (versprengt) в сторону от общей сферы деления, наконец митозы распадающиеся, дегенерирующиеся, подвергающиеся растворению, причем хроматиновых зерна разбиваются в протоплазму и в которых подвергаются набуханию. Но кромк непрямого деления очень распространен в саркомах и прямое, амитотическое деление путем фрагментации и похowania ядер, причем появляются фигуры (Sprossenfigure) часто очень причудливой формы (лапчатая, сгустевидная, ветвистая и пр.); образуются также многоядерные клетки. В которых клетках встречаются неорганные ядерные образования, отличающиеся своей необычайной величиной, превышающей обычную в несколько раз, и богатством хроматиновой системы, это — так называемые исполинские ядра (Riesenkerne), неправильной, лапчатой формы. Всев эти образования принимаются за выражение дегенеративной пролиферации клеток вследствие неправильного, постепенного роста опухоли.

Кромк этих признаков дегенеративного роста распространен в опухолях еще различные процессы регрессивного метаморфоза в зависимости от недостатка питающих крово-
носных сосудов. Гдѣ сосудовъ мало, тамъ паренхима опухоли подвергается мѣстной смерти. Очень обыкновенное явление почти при всѣхъ формахъ саркомы—болѣе или менѣе распространенное жизненное перерожденіе, которое особенно ясно замѣтно при изслѣдованіи стѣнокъ препаратовъ (послѣ обработки препаратовъ получаются вакуоли въ клѣткахъ съ жизненной дегенерацией).

При жизненой дегенерации всегда выражены извѣстныя измѣненія ядеръ. Хроматиновая сеть часто очень увеличена, такъ что появляются уже упомянутыя Riesenkerne. Въ другихъ клѣткахъ наступаетъ глубокое измѣненіе структуры ядра. Ядрышки часто уменьшены или особенно велики и часто даютъ особую отъ прочаго хроматина красящую реакцію, напримѣръ, иногда сильно выражено средство ихъ по отнесенію къ кислымъ ангилиновымъ краскамъ, такъ что на первый взглядъ они кажутся особыми отъ ядра образованіями и не разъ принимались за паразиты (blastomictы). Съ дальнѣйшимъ распадомъ хроматинъ ядернаго пузырька все болѣе и болѣе исчезаетъ и отлагается въ формѣ глобули, комковъ или неправильныхъ тѣлъ у ядерной оболочки, такъ что получаются полыни, колцевидныя ядра съ неправильно утолщенной периферической крайю хроматина (Kernwandhyperchromatose по K l e b s’ы, Pyknode по S c h m a u s’ы и A lb r e c h t’ы). Затѣмъ наступаетъ разрывъ такого кольца на одномъ или болѣе пунктахъ, получаются бисквitoобразныя, подковообразныя фигуры или въ видѣ тутовой ягоды; далѣе хроматинъ распадается на все меньшія частички (karyorrhesis) и наконецъ подвергается растворенію (karyolysis). Такой дегенерации и растворенію подвергаются также и митотическія фигуры въ каждой ихъ фазѣ.

Кромѣ жизненой дегенерации въ опухоляхъ часто наступаетъ обыкновенно вслѣдствіе тромбоза или эмболизаціи приводящихъ сосудовъ анемическій некрозъ и кавеозное перерожденіе. Некрозъ сопровождается свертываніемъ бѣлка, выдѣленіемъ фибрина между некроботическими клѣтками или образованіемъ гомогенаго фибриновиднаго вещества между ними; ядра клѣтокъ находятся въ состояніи karyorrhesis и karyolysis. Къ некрозамъ легко присоединяются крововѣзіянія. Излившавшися кровь проникаеть въ общество опухоли или лежитъ въ образовавшихся отъ разрыва кровью неправильныхъ полостяхъ. Всѣдствіе некроза и геморрагіи образуются очаги размягченія. Если геморрагія существуетъ долгое время, то кровь претерпѣваетъ извѣстныя преображенія (пигменты), отчасти всасывается и на ея мѣсто образуется жидкость. Такимъ путемъ возникаютъ иногда большия кисты. Кистозныя превращенія всей массы небольшой опухоли наблюдаются на центральныхъ гигантоклѣточныхъ саркомахъ человѣкъ, причемъ съ трудомъ можно еще найти ткань опухоли на внутренней поверхности костной, образованной периостомъ, стѣнки кисты.
Местом дегенеративных процессов может быть также и основное вещество. Вследствие отека получается сильное набухание его с образованием слизистоподобных продуктов. Часто встречается отложение известковых солей в видѣ кристаллов или более распространенных петрификаций, причем оно обыкновенно сочетается с жировой дегенерацией в паренхимѣ опухоли.

Кромѣ клѣтокъ и межклѣточного вещества особенного вниманія заслуживаютъ въ сарcomaхъ снабженіе кровеносными сосудами. Въ началѣ они, конечно, принадлежать материнской почвѣ, слѣдовательно предшествующиѣ, но при дальнѣйшемъ ростѣ опухоли они все болѣе и болѣе эмапцируются отъ материнской почвы и главная масса ихъ является новообразованной. Сосуды, особенно болѣе крупные, иногда сопровождаются разрастаніемъ извѣстнаго количества соединительной ткани, такъ что получается стroma и паренхима опухоли, т. е. органоидный характеръ строения. Часто сосуды въ саркомѣ имѣютъ очень тонкія стѣнки и представляются въ видѣ широкихъ эндоламелльныхъ трубочек, на которыхъ непосредственно сидятъ клѣтки опухоли. Случается также, что кровь циркулируетъ не въ цилиндрическихъ сосудахъ, а въ полостяхъ неправильной формы, иногда щелевидныхъ и ограничивающихъ только клѣтками опухоли, причемъ, естественно, легко образуются болѣе или менѣе распространенные геморрагіи.

Изглавна саркомы классифицируются по формѣ составляющих клѣтокъ. Однако почти никогда не бываетъ, чтобы они состояли только изъ одного вида клѣтокъ; большей частью преобладаетъ лишь известный типъ или имѣются особенности, характерные какъ точныя формы (гигантскія клѣтки).

Простѣйший и, такъ сказать, низшій видъ саркомы—это кругло клѣточковая сарcoma (sarcoma globocellulare),—тѣпа очень молочной, зародышевой соединительной ткани. Смотри по величинѣ—ставляющихъ клѣтокъ различаютъ мелко- и крупноклѣточковую форму. Ткань опухоли представляетъ диффузная скопленія клѣтокъ, напоминающія воспалительную клѣточную инфильтрацію, съ очень нѣжнымъ зернистымъ межклѣточнымъ веществомъ, которое иногда уплотняется въ тонкія волокно. Эта форма саркомы, особенно мелкоклѣточковая, образующая мягкія, мозгоподобныя опухоли (epcephaloid) съ легко изолируемыми (на разрѣзахъ) клѣтками, отличается крайне быстрымъ ростомъ и благодаря слабой структурѣ очень склонна къ регрессивнымъ метаморфозамъ (некрозъ, жировая дегенерация). Излюбленными мѣстами развитія круглоклѣточныхъ саркомъ будутъ—межмышечная соединительная ткань, кожа, линии, личики. Въ мышечной ткани особенно ясно бываетъ выраженій инфильтративный ростъ опухолей.
более высокую степень дифференцирования клеток представляет веретенообразноклеточная сарcoma; здесь соединительно-тканный характер клеток более выражен, они имеют тип "фibrопластов". Это — самая обыкновенная форма сарком. Смотря по величине клеток тут также различаются два группы: мелкоклеточная и крупноклеточная формы. Эти саркомы более доброкачественны, чем крупноклеточная, и мелкоклеточная форма в общем доброкачественна, чем крупноклеточная. Веретенообразноклеточная сарcoma с мелкими клетками почти не склонна к метастазам, но переледо репидивирует после удаления. Первооч она развивается из фасций, сосудистых и нервных влагалищ, в коже, подкожной и подслизистой соединительной ткани. Крупноклеточная форма происходит из фасций, перепончатых образований, периоста, межмышечной соединительной ткани, рёже из интерстициальной ткани железистых органов. По мнению некоторых авторов, веретенообразноклеточная сарcoma, а, может быть, и крупноклеточная, могут развиваться не только из фибробластной соединительной ткани, но также из гладких и поперечнонаполосатых мышц.

Некоторые саркомы отличаются болеё или менее богатым содержанием гигантских клеток, которые разъяви в прочем клеточном материале. Такие саркомы называются ги ган т о к л е т о ч н о м и (sarcoma gigantocellularare); они чаще всего бывают в сочетании с веретенообразноклеточной саркомой.

Под гигантской клеткой разумеют клеточный индивидуум, со многими ядрами (Polykaryocyt). Таких многоядерных клеток встречаются уже при некоторых формах воспаления и регенерации, в инфекционных гранулемах, а также в различных опухолях и не только в саркомах, но в и эндоотелиомах, раках и даже аденомах. Они происходят двумя принципиально различными способами: 1) путем повторного деления ядра в одной и том же клетке — (Proliferationsriesenelle) и 2) путем сплавления предшествующих клеток — (Conglutinationsriesenelle).

В туберкулёз, наприм., гигантских клетки образуются из сплавления эндотелиальных клеток кровеносных и лимфатических сосудов или из гомогенного дегенерированного содержимого их (гнойные тромбы в капиллярах), так как ядро лежит колышево в периферии или на обоих полюсах клетки; это — Langhansовский тип гигантских клеток. По W e i g еr't' y такое распределение ядер зависит от частичного (централизованного) некроза клеток. Langhansовский тип гигантских клеток имется также в гуммах. Клетки подобного же типа обра-
Гигантоклеточная саркома бедра

Из России

Вокруг внедрившихся в ткани всевозможных посторонних тел (материаля для шовов, частицы шпилек, бактерий), а также вокруг умерших частей самой ткани, которые действуют, как ирродное тело (например, ороговевшие клетки или гнезда распада в канкрозах); это — так называемая „Fremdkörperriesenze“. 

Вообще же Langhansовский тип гигантских клеток менее свойствен опухолям, чьим туберкулезом. Напротив в различных опухолях (также и эпителиальных) встречается другой тип гигантских клеток, который H. HANSEMAH называет „Parenchymriesenzelle“. Он происходит из элементов самой опухоли путем многократного деления клеточных ядер: возникновение же их путем слияния споры эти клеточные формы большей частью ясно отличаются от действительных поликарионитов, которые находятся в гигантоклеточных сарcomaх, или от гигантских клеток Langhansовского типа (вокруг ирродных тел, в туберкулях и гуммах). Именно, ядра в них очень неравномерной величины и представляют собою собственное фигуры почкования ядра (Kernsporosse) и потому переключить можно видеть, как два ядра или более в одной клетке остаются еще связанными между собой тонкими нитями или широкими мостиками (лапчатые ядра) хроматинового вещества. Такие формы особенно части в эндотелиомах.

В гигантоклеточных сарcomaх гигантскис клетки представляют третий тип. Эти саркомы часто развиваются из перистых и костного мозга (периостальная и миелогенная саркома), особенно на черепе (epulis sarcomatosa) и нижнем конца бедра (во внутренних частях) и гигантских клетки в них подобны таким же клеткам костного мозга. Впрочем такая саркома, как было и в нашем случае, повышается иногда независимо от костного мозга и везти от костей. Гигантские клетки в ней имеют характерное строение остеокластов (RiBBERT), но только значительно больше посложенных. Они содержать много ядер, которые лежат отдельно друг от друга и имеют равномерную величину и, славодательно, не соотвествуют и так наз. микроплакам костного мозга, которые отличаются неправильной, снабженной перегородками и выростами, ядерной массой. Гигантские клетки саркомы обыкновенно не имеют функции остеокластов и лежат большей частью без всякого отношения к кости среди других клеток, образующих основную ткань опухоли. Они обыкновенно разъединены группами, так что местами скопляются в большом числе, а в других частях совершенно отсутствуют. Число ядер в одной клетке иногда очень велико, иногда в несколько сотен, так что клетки
могут быть замкнуты в срез и на простой глаз, в виду более темных пунктов. Ядра овальной или круглой формы лежат тесными кучами более во внутренних участках клеточного тела, занимая одновременно большую часть этого тела и лишь периферия последнего представляет святую, безядерную цейму протоплазмы. Форма клеток крупная или неправильная, с короткими отростками (гигантских клетки в туберкулах часто с длинными отростками, псевдоцидозами) холибодвигая и т. д. Протоплазма их нежнозернистая и в высокой степени подвержена жировой дегенерации, так что на уплотненных и окрашенных срезах клеточное тело (часть его свободная от ядер) представляется иногда сотовидно продыривленным вследствие образования вакуолей на мести жировых капель. Прочия клетки гигантклеточковой саркомы бывают очень различны; чаще всего они соответствуют типу крупно-круглолеточной и веретенообразноклеточной саркомы, причем одновременно клетки в количестве почти всегда преобладают на гигантскими клетками.

Впрочем большую часть саркомы нельзя строго подвести ни под одну из описанных форм, так как их клетки очень неоднородны; большая часть их неправильной многоугольной формы, но к ним примешаны в большем или в меньшем количестве то мелкие, то крупные круглые и веретенообразные элементы, а также многоядерные и гигантские клетки. Вследствие такого разнообразия клеток на малом пространстве эти опухоли определяются как полиморфноклеточная сарcoma.

Гигантклеточковые саркомы меньше злокачественны, чем другие формы. Они растут часто медленно и экстрапирия их, напр., на челостях кончается хорошим исходом; они иногда рецидивируют, но не очень склонны к метастазам.

Кромет описанных более простых форм бывают саркомы более высокаго развития. Именно, при многих саркомах имеется не только разрастание клеток самой паренхимы опухоли, но кромет того бывает выражаем также известный вид зрелой ткани соединительнотканной группы, так что получается комбинация, состоящая из различных тканей или из различных стадий дифференцирования одной ткани. Это может произойти двояким путем. В одном случае в тишической соединительнотканной опухоли, напр. в фиброму, наступает переруб роста, возникает атипическая, метапластическая пролиферация клеток, которые и остаются на нейшей, эмбриональной стадии развития, сладоательно наступает, как это называлось раньше, "саркоматозная дегенерация" опухоли. Согласно номенклатуре Ворстая, такая опухоли, развивающаяся из тишической зрелой ткани, но посладательно приобретая, вследствии изменение
характера пролиферации атипический отпечаток, называются име-нием соответствующей опухоли, к которой присоединяется прилагательное "sarcomatosum". Таким образом, мы имеем фиброма sar-
comatosum, myxoma sarcomatosum, chondroma sarcomatosum и пр. В другом случае совершается рост тяпической, зрелой ткани одновременно с ростом недифференцированных клеточных элементов, так что уже с самого начала имется комбинация двух родов опухолей, поэтому и название образуется через сочленение двух опухолей, как фибро-sarcoma, myxo-sarcoma, единение sarcoma и пр. Такие опухоли представляют уже органоидный ха-
рактер.
Саркомы с образованием костного вещества вообще носят название остеосарком, но это неправильно. Не всякая саркома, бурющая свое начало от кости или стущая в кости, должна называться остеосаркомой. Из периста, напр., развиваются веретенообразные или гигантоклеточные, иногда круглоклеточные саркомы, которые в дальнейшем рост разрушают костное вещество, так что в них находят костные массы в качестве стromы, которая достается материнской почвой, но постепенно более и более разрушается и наконец совершенно исчезает. Точно также саркомы, развивающиеся где либо вдали от кости, могут дать метастазы в кость и в ней расти дальше. Такая опухоль было бы неправильно называть остеосаркомами, ибо здесь имется только "саркома кости". Конечно, при рост в таких опу-
холях наступают в кости известные реактивные, воспалительные явления, в результате которых иногда богато развиваются остео-
филы, так что стroma опухоли значительно увеличивается и в каждом конкретном случае иногда очень трудно, а на отдельных препаратах даже невозможно решить вопрос, есть ли новообразование кости производное самой опухоли или оно представляет лишь воспалительное разрастание предшествующей кости.
Наконец в саркомах подобно соединительномканным опу-
холям, напр. фибробластам, могут существовать настояще осси-
фикационные процессы или им очень подобные и тогда по анало-
гии с fibroma ossificans мы имеем sarcoma ossificans. Од-
нако развитие костного вещества часто является во многих отно-
шениях недостаточно выраженным. Оно совершается таким образом, что между компонентами веретенообразных или полигональ-
ных саркоматозных клеток основное вещество превращается в гомогенную, глянцевую блестящую массу, которая обнаруживает балковидное или сфеноидное распределение и заключает в себе немного сохранившихся клеток, большее частью продолжавшего или веретенообразного вида, лежащих в цервикальных целевым промежутках. Иногда эти клетки представляются более зубча-
тыми или даже имѣютъ боковые нѣжно волосистые отростки, по-средствомъ которыхъ могутъ анастомизировать между собою, такъ что получають большое сходство съ настоящими костными клѣтками; однако основное вещество можетъ при этомъ не подвергаться обнаружению, не принимать ламеллярной структуры и походить болѣе на хрящевое вещество. Образуется, слѣдовательно, лишь остеоидная ткань и саркома носить название остеидной—sarcoma osteoides. Въ дальнѣйшемъ можетъ наступить частичное обнаружение остеоидныхъ балокъ, причемъ первыя отложения известны появляются обыкновенно вокругъ клѣтокъ и затѣмъ распространяются на межклѣточное вещество. Получается такимъ образомъ еще большее сходство съ настоящей костной тканью, недостаетъ только ламеллярной структуры кости. Иногда въ основномъ веществѣ образуется спонгіозная сѣть обнаружеченныхъ балокъ съ немногими заключенными въ нихъ клѣтками, подобными костнымъ, или совсѣмъ безъ нихъ, такъ что имѣется такъ называе Waiting for the next action...
клетки. Рост этих опухолей совершается по двум направлениям: внаружку посредством разрастания клеточных масс и аппозиционно костных балочек, и внутрь, к стенкам. Клеточный массы распределяются правильно рядами и функционируют как истинные остеобласты, образуя объяснительно волокнистое вещество. При этом, как и при физиологическом окостенении, клетки превращаются в отростчатые костные тельца и послевоенно образуются системы ламелей. Старая же кость подвергается всасыванию путем дейтельности остеокластов с образованием "Howship"овых лакун, а также путем расщепления (Spaltung) kostного вещества между первичными элементами его, фибриллами, причем появляются так называемые Recklinghausenовские "Gitterfiguren". При образовании этих решетообразных фигур исчезают костные каналы и костные тельца, исчезает именно неорганический материал (обезвоживание) и остается гиалиновая, способная к всасыванию масса; между тем при лакунарной резорбции исчезает органический материал. Кромь того старая кость разрушается чрез образование так называемых перфорирующих каналов, происходящих от врастания в костное вещество сосудистых тяжей из саркоматозных клеток, в котором вследствие этого образуются как бы пробуравленные ходы и дыры. Такими процессами corticalis все более и боле разрушается и опухоль проникает в kostномозговую полость, глубокой продолжает расти по тому же типу, как и снаружи от corticalis, т. е. с образованием новых костных балочек и одновременным расплавлением и исчезновением прежних спонгиозных составных частей kostномозговой полости.

При мозговенчатых, центральных osteosarkомах рост идет в обратном направлении. Corticalis разрушается снаружи и послева того, как она большей частью уже погибла, снаружи образуется аппозиционными процессами в собственной массе опухоли род новой костной пластинки в виду тонкой, пергаментоподобной костной скорлупы. Последняя большей частью тоже не представляет достаточного сопротивления процессу расплавления, так что, напр., на длинных трубчатых костях исчезает наконец послевоенная наружная опора и клеточная спонгиозная масса опухоли прорывается наружу. Тогда уже сарcoma растет без препятствия и при этом почти всегда имеет мягкую консистенцию. Мозговенные sarкомы представляют собою простокохлеоточковую или большей частью полиморфную клеточную форму.
Литература.

Ribbert. Geschwülstlehre, Bonn 1904.
Sokolow. Ueber die Entwicklung des Sarcoms in den Muskeln, Virchow’s Archiv 57 Bd. 1873.